The search functionality is under construction.

Keyword Search Result

[Keyword] SAT(672hit)

61-80hit(672hit)

  • Characteristics and Applicability of Frequency Sharing Criteria in the Broadcasting Satellite Link Open Access

    Kazuyoshi SHOGEN  Thong PHAM VIET  

     
    PAPER-Satellite Communications

      Pubricized:
    2019/06/17
      Vol:
    E102-B No:12
      Page(s):
    2297-2303

    Two frequency sharing criteria for BSS (Broadcasting-Satellite Service) are enacted in Sect.1 of Annex 1 to Appendix 30 to Radio Regulations. These two criteria are pfd (power flux-density) and EPM (Equivalent Protection Margin) values. In this paper, the two criteria are compared and studied from the view point of applicability to the sharing cases between BSS and BSS. In particular, it is shown that in some cases, the EPM criterion contributes to alleviate the problem of “sensitive satellite network”, i.e., one that has relatively low transmission power and is very weak against interference and blocks the new satellite to enter. Disclaimer The views and positions expressed by the authors are strictly personal and do not constitute, nor can be interpreted as, the position of the International Telecommunication Union on the topics addressed in this paper.

  • An Image Fusion Scheme for Single-Shot High Dynamic Range Imaging with Spatially Varying Exposures

    Chihiro GO  Yuma KINOSHITA  Sayaka SHIOTA  Hitoshi KIYA  

     
    PAPER-Image

      Vol:
    E102-A No:12
      Page(s):
    1856-1864

    This paper proposes a novel multi-exposure image fusion (MEF) scheme for single-shot high dynamic range imaging with spatially varying exposures (SVE). Single-shot imaging with SVE enables us not only to produce images without color saturation regions from a single-shot image, but also to avoid ghost artifacts in the producing ones. However, the number of exposures is generally limited to two, and moreover it is difficult to decide the optimum exposure values before the photographing. In the proposed scheme, a scene segmentation method is applied to input multi-exposure images, and then the luminance of the input images is adjusted according to both of the number of scenes and the relationship between exposure values and pixel values. The proposed method with the luminance adjustment allows us to improve the above two issues. In this paper, we focus on dual-ISO imaging as one of single-shot imaging. In an experiment, the proposed scheme is demonstrated to be effective for single-shot high dynamic range imaging with SVE, compared with conventional MEF schemes with exposure compensation.

  • A Hue-Preserving Tone Mapping Scheme Based on Constant-Hue Plane Without Gamut Problem

    Yuma KINOSHITA  Kouki SEO  Artit VISAVAKITCHAROEN  Hitoshi KIYA  

     
    PAPER-Image

      Vol:
    E102-A No:12
      Page(s):
    1865-1871

    We propose a novel hue-preserving tone mapping scheme. Various tone mapping operations have been studied so far, but there are very few works on color distortion caused in image tone mapping. First, LDR images produced from HDR ones by using conventional tone mapping operators (TMOs) are pointed out to have some distortion in hue values due to clipping and rounding quantization processing. Next,we propose a novel method which allows LDR images to have the same maximally saturated color values as those of HDR ones. Generated LDR images by the proposed method have smaller hue degradation than LDR ones generated by conventional TMOs. Moreover, the proposed method is applicable to any TMOs. In an experiment, the proposed method is demonstrated not only to produce images with small hue degradation but also to maintain well-mapped luminance, in terms of three objective metrics: TMQI, hue value in CIEDE2000, and the maximally saturated color on the constant-hue plane in the RGB color space.

  • 120-W Ku-Band GaN SSPA with Diode Linearizer for Future Broadcasting Satellites Open Access

    Masafumi NAGASAKA  Masaaki KOJIMA  Takuma TORII  Hiromitsu UTSUMI  Koji YAMANAKA  Shintaro SHINJO  Mitsuhiro SHIMOZAWA  Hisashi SUJIKAI  

     
    PAPER

      Vol:
    E102-C No:10
      Page(s):
    717-724

    Satellite broadcasting of 4K/8K ultra-high definition television (UHDTV) was launched in Japan in December 2018. Because this system uses the amplitude and phase shift keying (APSK) modulation scheme, there is a need to improve the non-linear characteristics of the satellite transponders. To meet this requirement, we have been developing a 120-W-class Ku-band solid state power amplifier (SSPA) as a replacement for the currently used traveling wave tube amplifier (TWTA). In this study, we developed a gallium-nitride (GaN) SSPA and linearizer (LNZ). The SSPA achieved an output power of 120W while maintaining a power added efficiency (PAE) of 31%. We evaluated the transmission performance of 16APSK in this SSPA channel in comparison with that in the TWTA channel.

  • On the Performance of Hybrid Satellite-Terrestrial Cooperative Networks with Different Combining Schemes

    Guoqiang CHENG  Qingquan HUANG  Zhi LIN  Xiangshuai TAO  Jian OUYANG  Guodong WU  

     
    PAPER

      Pubricized:
    2019/05/02
      Vol:
    E102-B No:10
      Page(s):
    2006-2013

    In this paper, we consider a hybrid satellite terrestrial cooperative network with a multi-antenna relay where the satellite links follows the shadowed-Rician fading and the terrestrial link undergoes the correlated Rayleigh fading. Specifically, two different channel state information (CSI) assumptions are considered: 1) full CSI at the relay; 2) full CSI of satellite-relay link and statistical CSI of relay-destination link at the relay. In addition, selection combining (SC) or maximal ratio combining (MRC) are used at the destination to combine the signals from direct link and relay link. By considering the above four cases, we derived the closed-form expressions for the outage probability (OP) respectively. Furthermore, the asymptotic OP expressions at high signal-to-noise (SNR) are developed to reveal the diversity orders and the array gains of the considered network. Finally, numerical results are provided to validate our analytical expressions as well as the system performance for different cases.

  • Satellite Constellation Based on High Elevation Angle for Broadband LEO Constellation Satellite Communication System

    Jun XU  Dongming BIAN  Chuang WANG  Gengxin ZHANG  Ruidong LI  

     
    PAPER

      Pubricized:
    2019/05/07
      Vol:
    E102-B No:10
      Page(s):
    1960-1966

    Due to the rapid development of small satellite technology and the advantages of LEO satellite with low delay and low propagation loss as compared with the traditional GEO satellite, the broadband LEO constellation satellite communication system has gradually become one of the most important hot spots in the field of satellite communications. Many countries and satellite communication companies in the world are formulating the project of broadband satellite communication system. The broadband satellite communication system is different from the traditional satellite communication system. The former requires a higher transmission rate. In the case of high-speed transmission, if the low elevation constellation is adopted, the satellite beam will be too much, which will increase the complexity of the satellite. It is difficult to realize the low-cost satellite. By comparing the complexity of satellite realization under different elevation angles to meet the requirement of terminal speed through link computation, this paper puts forward the conception of building broadband LEO constellation satellite communication system with high elevation angle. The constraint relation between satellite orbit altitude and user edge communication elevation angle is proposed by theoretical Eq. deduction. And the simulation is carried out for the satellite orbit altitude and edge communication elevation angle.

  • From Homogeneous to Heterogeneous: An Analytical Model for IEEE 1901 Power Line Communication Networks in Unsaturated Conditions

    Sheng HAO  Huyin ZHANG  

     
    PAPER-Network

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1636-1648

    Power line communication (PLC) networks play an important role in home networks and in next generation hybrid networks, which provide higher data rates (Gbps) and easier connectivity. The standard medium access control (MAC) protocol of PLC networks, IEEE 1901, uses a special carrier sense multiple access with collision avoidance (CSMA/CA) mechanism, in which the deferral counter technology is introduced to avoid unnecessary collisions. Although PLC networks have achieved great commercial success, MAC layer analysis for IEEE 1901 PLC networks received limited attention. Until now, a few studies used renewal theory and strong law of large number (SLLN) to analyze the MAC performance of IEEE 1901 protocol. These studies focus on saturated conditions and neglect the impacts of buffer size and traffic rate. Additionally, they are valid only for homogeneous traffic. Motivated by these limitations, we develop a unified and scalable analytical model for IEEE 1901 protocol in unsaturated conditions, which comprehensively considers the impacts of traffic rate, buffer size, and traffic types (homogeneous or heterogeneous traffic). In the modeling process, a multi-layer discrete Markov chain model is constructed to depict the basic working principle of IEEE 1901 protocol. The queueing process of the station buffer is captured by using Queueing theory. Furthermore, we present a detailed analysis for IEEE 1901 protocol under heterogeneous traffic conditions. Finally, we conduct extensive simulations to verify the analytical model and evaluate the MAC performance of IEEE 1901 protocol in PLC networks.

  • Experimental Evaluation of Synchronized SS-CDMA Transmission Timing Control Method for QZSS Short Message Communication

    Suguru KAMEDA  Kei OHYA  Hiroshi OGUMA  Noriharu SUEMATSU  

     
    PAPER-Satellite Communications

      Pubricized:
    2019/01/25
      Vol:
    E102-B No:8
      Page(s):
    1781-1790

    We have already proposed synchronized spread spectrum code division multiple access (SS-CDMA) for the Quasi-Zenith Satellite System (QZSS) safety confirmation system to be used in times of great disaster. In this system, the satellite reception timings of all uplink signals are synchronized using a transmission timing control method in order to realize high-density user multiple access. An issue that should be addressed in order for this system to be viable is the error that can occur in the satellite reception timing. This error occurs due to the terminal time deviation and the error in calculating the propagation delay to the satellite. In this paper, we measure the terminal time deviation and the propagation delay calculation error at the same time by using the same receivers and evaluate the satellite reception timing error of the uplink signal. By this measurement, it is shown that satellite reception timing error within 50ns can be realized in 99.98% of mobile terminals. This shows that the synchronized SS-CDMA with the transmission timing control method has a potential to realize the QZSS short message system with high-density user multiple access.

  • Design of High-Rate Polar-LDGM Codes for Relay Satellite Communications

    Bin DUO  Junsong LUO  Yong FANG  Yong JIA  Xiaoling ZHONG  Haiyan JIN  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/12/03
      Vol:
    E102-B No:6
      Page(s):
    1128-1139

    A high-rate coding scheme that polar codes are concatenated with low density generator matrix (LDGM) codes is proposed in this paper. The scheme, referred to as polar-LDGM (PLG) codes, can boost the convergence speed of polar codes and eliminate the error floor behavior of LDGM codes significantly, while retaining the low encoding and decoding complexity. With a sensibly designed Gaussian approximation (GA), we can accurately predict the theoretical performance of PLG codes. The numerical results show that PLG codes have the potential to approach the capacity limit and avoid error floors effectively. Moreover, the encoding complexity is lower than the existing LDPC coded system. This motives the application of powerful PLG codes to satellite communications in which message transmission must be extremely reliable. Therefore, an adaptive relaying protocol (ARP) based on PLG codes for the relay satellite system is proposed. In ARP, the relay transmission is selectively switched to match the channel conditions, which are determined by an error detector. If no errors are detected, the relay satellite in cooperation with the source satellite only needs to forward a portion of the decoded message to the destination satellite. It is proved that the proposed scheme can remarkably improve the error probability performance. Simulation results illustrate the advantages of the proposed scheme

  • VHDL Design of a SpaceFibre Routing Switch Open Access

    Alessandro LEONI  Pietro NANNIPIERI  Luca FANUCCI  

     
    LETTER-VLSI Design Technology and CAD

      Vol:
    E102-A No:5
      Page(s):
    729-731

    The technology advancement of satellite instruments requires increasingly fast interconnection technologies, for which no standardised solution exists. SpaceFibre is the forthcoming protocol promising to overcome the limitation of its predecessor SpaceWire, offering data-rate higher than 1Gbps. However, while several implementations of the SpaceFibre IP already exist, its Network Layer is still at experimental level. This article describes the architecture of an implemented SpaceFibre Routing Switch and provides synthesis results for common FPGAs.

  • Rigorous Analytical Model of Saturated Throughput for the IEEE 802.11p EDCA

    Shintaro IKUMA  Zhetao LI  Tingrui PEI  Young-June CHOI  Hiroo SEKIYA  

     
    PAPER

      Pubricized:
    2018/10/15
      Vol:
    E102-B No:4
      Page(s):
    699-707

    The IEEE 802.11p Enhanced Distributed Channel Access (EDCA) is a standardization for vehicle-to-vehicle and road-to-vehicle communications. The saturated throughputs of the IEEE 802.11p EDCA obtained from previous analytical expressions differ from those of simulations. The purpose of this paper is to explain the reason why the differences appear in the previous analytical model of the EDCA. It is clarified that there is a special state wherein the Backoff Timer (BT) is decremented in the first time slot of after a frame transmission, which cannot be expressed in the previous Markov model. In addition, this paper proposes modified Markov models, which allow the IEEE 802.11p EDCA to be correctly analyzed. The proposed models describe BT-decrement procedure in the first time slot accurately by adding new states to the previous model. As a result, the proposed models provide accurate transmission probabilities of network nodes. The validity of the proposed models is confirmed by the quantitative agreements between analytical predictions and simulation results.

  • Bandwidth-Efficient Blind Nonlinear Compensation of RF Receiver Employing Folded-Spectrum Sub-Nyquist Sampling Technique Open Access

    Kan KIMURA  Yasushi YAMAO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/09/14
      Vol:
    E102-B No:3
      Page(s):
    632-640

    Blind nonlinear compensation for RF receivers is an important research topic in 5G mobile communication, in which higher level modulation schemes are employed more often to achieve high capacity and ultra-broadband services. Since nonlinear compensation circuits must handle intermodulation bandwidths that are more than three times the signal bandwidth, reducing the sampling frequency is essential for saving power consumption. This paper proposes a novel blind nonlinear compensation technique that employs sub-Nyquist sampling analog-to-digital conversion. Although outband distortion spectrum is folded in the proposed sub-Nyquist sampling technique, determination of compensator coefficients is still possible by using the distortion power. Proposed technique achieves almost same compensation performance in EVM as the conventional compensation scheme, while reducing sampling speed of analog to digital convertor (ADC) to less than half the normal sampling frequency. The proposed technique can be applied in concurrent dual-band communication systems and adapt to flat Rayleigh fading environments.

  • Full-Aperture Processing of Ultra-High Resolution Spaceborne SAR Spotlight Data Based on One-Step Motion Compensation Algorithm

    Tianshun XIANG  Daiyin ZHU  

     
    PAPER-Remote Sensing

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    247-256

    With the development of spaceborne synthetic aperture radar (SAR), ultra-high spatial resolution has become a hot topic in recent years. The system with high spatial resolution requests large range bandwidths and long azimuth integration time. However, due to the long azimuth integration time, many problems arise, which cannot be ignored in the operational ultra-high resolution spotlight mode. This paper investigates two critical issues that need to be noticed for the full-aperture processing of ultra-high resolution spaceborne SAR spotlight data. The first one is the inaccuracy of the traditional hyperbolic range model (HRM) when the system approaches decimeter range resolution. The second one is the azimuth spectral folding phenomenon. The problems mentioned above result in significant degradation of the focusing effect. Thus, to solve these problems, a full-aperture processing scheme is proposed in this paper which combines the superiorities of two generally utilized processing algorithms: the precision of one-step motion compensation (MOCO) algorithm and the efficiency of modified two-step processing approach (TSA). Firstly, one-step MOCO algorithm, a state-of-the-art MOCO algorithm which has been applied in ultra-high resolution airborne SAR systems, can precisely correct for the error caused by spaceborne curved orbit. Secondly, the modified TSA can avoid the phenomenon of azimuth spectrum folding effectively. The key point of the modified TSA is the deramping approach which is carried out via the convolution operation. The reference function, varying with the instantaneous range frequency, is adopted by the convolution operation for obtaining the unfolding spectrum in azimuth direction. After these operations, the traditional wavenumber domain algorithm is available because the error caused by spaceborne curved orbit and the influence of the spectrum folding in azimuth direction have been totally resolved. Based on this processing scheme, the ultra-high resolution spaceborne SAR spotlight data can be well focused. The performance of the full-aperture processing scheme is demonstrated by point targets simulation.

  • Development of Acoustic Nonverbal Information Estimation System for Unconstrained Long-Term Monitoring of Daily Office Activity

    Hitomi YOKOYAMA  Masano NAKAYAMA  Hiroaki MURATA  Kinya FUJITA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2018/11/12
      Vol:
    E102-D No:2
      Page(s):
    331-345

    Aimed at long-term monitoring of daily office conversations without recording the conversational content, a system is presented for estimating acoustic nonverbal information such as utterance duration, utterance frequency, and turn-taking. The system combines a sound localization technique based on the sound energy distribution with 16 beam-forming microphone-array modules mounted in the ceiling for reducing the influence of multiple sound reflection. Furthermore, human detection using a wide field of view camera is integrated to the system for more robust speaker estimation. The system estimates the speaker for each utterance and calculates nonverbal information based on it. An evaluation analyzing data collected over ten 12-hour workdays in an office with three assigned workers showed that the system had 72% speech segmentation detection accuracy and 86% speaker identification accuracy when utterances were correctly detected. Even with false voice detection and incorrect speaker identification and even in cases where the participants frequently made noise or where seven participants had gathered together for a discussion, the order of the amount of calculated acoustic nonverbal information uttered by the participants coincided with that based on human-coded acoustic nonverbal information. Continuous analysis of communication dynamics such as dominance and conversation participation roles through nonverbal information will reveal the dynamics of a group. The main contribution of this study is to demonstrate the feasibility of unconstrained long-term monitoring of daily office activity through acoustic nonverbal information.

  • Zero-Forcing Aided Polarization Dependent Loss Elimination for Polarization Modulation Based Dual-Polarized Satellite Systems

    Rugang WANG  Feng ZHOU  Xiaofang YANG  Zhangkai LUO  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:1
      Page(s):
    290-295

    To improve the robustness of the polarization modulation (PM) technique applied in dual-polarized satellite systems, a zero-forcing aided demodulation (ZFAD) method is proposed to eliminate the impairment to the PM from the depolarization effect (DE). The DE elimination is traditionally dependent on the pre-compensation method, which is based on the channel state information (CSI). While the distance between communication partners in satellite systems is so long that the CSI can not be always updated in time at the transmitter side. Therefore, the pre-compensation methods may not perform well. In the ZFAD method, the CSI is estimated at the receiver side and the zero forcing matrix is constructed to process the received signal before demodulating the PM signal. In this way, the DE is eliminated. In addition, we derive the received signal-to-noise ratio expression of the PC and ZFAD methods with the statistical channel model for a better comparison. Theoretical analysis and simulation results demonstrate the ZFAD method can eliminate the DE effect effectively and achieve a better symbol error rate performance than the pre-compensation method.

  • Random Access Control Scheme with Reservation Channel for Capacity Expansion of QZSS Safety Confirmation System Open Access

    Suguru KAMEDA  Kei OHYA  Tomohide TAKAHASHI  Hiroshi OGUMA  Noriharu SUEMATSU  

     
    PAPER

      Vol:
    E102-A No:1
      Page(s):
    186-194

    For capacity expansion of the Quasi-Zenith Satellite System (QZSS) safety confirmation system, frame slotted ALOHA with flag method has previously been proposed as an access control scheme. While it is always able to communicate in an optimum state, its maximum channel efficiency is only 36.8%. In this paper, we propose adding a reservation channel (R-Ch) to the frame slotted ALOHA with flag method to increase the upper limit of the channel efficiency. With an R-Ch, collision due to random channel selection is decreased by selecting channels in multiple steps, and the channel efficiency is improved up to 84.0%. The time required for accommodating 3 million mobile terminals, each sending one message, when using the flag method only and the flag method with an R-Ch are compared. It is shown that the accommodating time can be reduced to less than half by adding an R-Ch to the flag method.

  • Frequency Resource Management Based on Model Predictive Control for Satellite Communications System

    Yuma ABE  Hiroyuki TSUJI  Amane MIURA  Shuichi ADACHI  

     
    PAPER-Systems and Control

      Vol:
    E101-A No:12
      Page(s):
    2434-2445

    We propose an approach to allocate bandwidth for a satellite communications (SATCOM) system that includes the recent high-throughput satellite (HTS) with frequency flexibility. To efficiently operate the system, we manage the limited bandwidth resources available for SATCOM by employing a control method that allows the allocated bandwidths to exceed the communication demand of user terminals per HTS beam. To this end, we consider bandwidth allocation for SATCOM as an optimal control problem. Then, assuming that the model of communication requests is available, we propose an optimal control method by combining model predictive control and sparse optimization. The resulting control method enables the efficient use of the limited bandwidth and reduces the bandwidth loss and number of control actions for the HTS compared to a setup with conventional frequency allocation and no frequency flexibility. Furthermore, the proposed method allows to allocate bandwidth depending on various control objectives and beam priorities by tuning the corresponding weighting matrices. These findings were verified through numerical simulations by using a simple time variation model of the communication requests and predicted aircraft communication demand obtained from the analysis of actual flight tracking data.

  • Multiple Symbol Differential Detection Scheme for IEEE 802.15.4 BPSK Receivers

    Gaoyuan ZHANG  Hong WEN  Longye WANG  Xiaoli ZENG  Jie TANG  Runfa LIAO  Liang SONG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:11
      Page(s):
    1975-1979

    A simple and novel multiple-symbol differential detection (MSDD) scheme is proposed for IEEE 802.15.4 binary phase shift keying (BPSK) receivers. The detection is initiated by estimating and compensating the carrier frequency offset (CFO) effect in the chip sample of interest. With these new statistics, the decisions are jointly made by allowing the observation window length to be longer than two bit intervals. Simulation results demonstrate that detection reliability of the IEEE 802.15.4 BPSK receivers is significantly improved. Namely, at packet error rate (PER) of 1×10-3, the signal-to-noise ratio (SNR) gap between ideal coherent detection (perfect carrier reference phase and no CFO) with differential decoding and conventional optimal single differential coherent detection (SDCD) is filled by 2.1dB when the observation window length is set to 6bit intervals. Then, the benefit that less energy consumed by retransmissions is successfully achieved.

  • User Satisfaction Constraint Adaptive Sleeping in 5G mmWave Heterogeneous Cellular Network

    Gia Khanh TRAN  Hidekazu SHIMODAIRA  Kei SAKAGUCHI  

     
    PAPER

      Pubricized:
    2018/04/13
      Vol:
    E101-B No:10
      Page(s):
    2120-2130

    Densification of mmWave smallcells overlaid on the conventional macro cell is considered to be an essential technology for enhanced mobile broadband services and future IoT applications requiring high data rate e.g. automated driving in 5G communication networks. Taking into account actual measurement mobile traffic data which reveal dynamicity in both time and space, this paper proposes a joint optimization of user association and smallcell base station (BS)'s ON/OFF status. The target is to improve the system's energy efficiency while guaranteeing user's satisfaction measured through e.g. delay tolerance. Numerical analyses are conducted to show the effectiveness of the proposed algorithm against dynamic traffic variation.

  • Toward In-Network Deep Machine Learning for Identifying Mobile Applications and Enabling Application Specific Network Slicing Open Access

    Akihiro NAKAO  Ping DU  

     
    INVITED PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1536-1543

    In this paper, we posit that, in future mobile network, network softwarization will be prevalent, and it becomes important to utilize deep machine learning within network to classify mobile traffic into fine grained slices, by identifying application types and devices so that we can apply Quality-of-Service (QoS) control, mobile edge/multi-access computing, and various network function per application and per device. This paper reports our initial attempt to apply deep machine learning for identifying application types from actual mobile network traffic captured from an MVNO, mobile virtual network operator and to design the system for classifying it to application specific slices.

61-80hit(672hit)