The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SC(4570hit)

2541-2560hit(4570hit)

  • Four-Quadrant-Input Linear Transconductor Employing Source and Sink Currents Pair for Analog Multiplier

    Masakazu MIZOKAMI  Kawori TAKAKUBO  Hajime TAKAKUBO  

     
    PAPER

      Vol:
    E89-A No:2
      Page(s):
    362-368

    A four-quadrant-input linear transconductor generating a product or a product sum current is proposed. The proposed circuit eliminates the influence of channel length modulation and expands a dynamic input voltage range. As an application of the proposed circuit, the four-quadrant analog multiplier is designed. The four-quadrant analog multiplier consists of the proposed circuit, an input circuit and a class AB current buffer. HSPICE simulation results with 0.35 µm n-well single CMOS process parameter are shown in order to evaluate the proposed circuit.

  • A New Linear Transconductor Combining a Source Coupled Pair with a Transconductor Using Bias-Offset Technique

    Isamu YAMAGUCHI  Fujihiko MATSUMOTO  Makoto IZUMA  Yasuaki NOGUCHI  

     
    PAPER

      Vol:
    E89-A No:2
      Page(s):
    369-376

    Linearity of a transconductor with a theoretical linear characteristic is deteriorated by mobility degradation, in practice. In this paper, a technique to improve the linearity by combining a source-coupled pair with the transconductor is proposed. The proposed transconductor is the circuit that the deteriorated linearity of the conventional part is compensated by the transconductance characteristic of the source-coupled pair. In order to confirm the validity of the proposed technique, SPICE simulation is carried out. The transconductance change ratio of the proposed technique is about 1% and is 1/10 or less of the conventional circuit.

  • Progress in THz Generation Using Josephson Fluxon Dynamics in Intrinsic Junctions

    Myung-Ho BAE  Hu-Jong LEE  

     
    INVITED PAPER

      Vol:
    E89-C No:2
      Page(s):
    106-112

    Collective transverse plasma modes in Bi2Sr2CaCu2O8+x intrinsic Josephson junctions (IJJs) can be excited by the moving fluxon lattices. Progressive transformation of the standing-wave-like fluxon-lattice configuration from a triangular lattice to a rectangular lattice takes place as the dynamic fluxon-lattice modes are in resonance with the collective transverse plasma modes. In this paper, we review the progress in terahertz-frequency-range electromagnetic wave generation from the IJJs using the resonance between moving fluxon lattice and the collective transverse plasma modes.

  • Independent Row-Oblique Parity for Double Disk Failure Correction

    Chih-Shing TAU  Tzone-I WANG  

     
    PAPER-Coding Theory

      Vol:
    E89-A No:2
      Page(s):
    592-599

    This paper proposes a parity placement scheme, Row-Oblique Parity (ROP), for protecting against double disk failure in disk array systems. It stores all data unencoded, and uses only exclusive-or (XOR) operations to compute parity. ROP is provably optimal in computational complexity, both during construction and reconstruction. It is optimal in the capacity of redundant information stored and accessed. The simplicity of ROP allowed us to implement it within the current available RAID framework.

  • Analysis of the Clock Jitter Effects in a Time Invariant Model of Continuous Time Delta Sigma Modulators

    Hossein SHAMSI  Omid SHOAEI  Roghayeh DOOST  

     
    PAPER

      Vol:
    E89-A No:2
      Page(s):
    399-407

    In this paper by using an exactly analytic approach the clock jitter in the feedback path of the continuous time Delta Sigma modulators (CT DSM) is modeled as an additive jitter noise, providing a time invariant model for a jittery CT DSM. Then for various DAC waveforms the power spectral density (psd) of the clock jitter at the output of DAC is derived and by using an approximation the in-band power of the clock jitter at the output of the modulator is extracted. The simplicity and generality of the proposed approach are the main advantages of this paper. The MATALB and HSPICE simulation results confirm the validity of the proposed formulas.

  • Design of a Mobile Application Framework with Context Sensitivities

    Hyung-Min YOON  Woo-Shik KANG  Oh-Young KWON  Seong-Hun JEONG  Bum-Seok KANG  Tack-Don HAN  

     
    PAPER-Mobile Computing

      Vol:
    E89-D No:2
      Page(s):
    508-515

    New service concepts involving mobile devices with a diverse range of embedded sensors are emerging that share contexts supporting communication on a wireless network infrastructure. To promote these services in mobile devices, we propose a method that can efficiently detect a context provider by partitioning the location, time, speed, and discovery sensitivities.

  • An Online Scheduling Algorithm for Assigning Jobs in the Computational Grid

    Chuliang WENG  Minglu LI  Xinda LU  

     
    PAPER-Grid Computing

      Vol:
    E89-D No:2
      Page(s):
    597-604

    The computational grid provides a promising platform for the deployment of various high-performance computing applications. Problem in implementing computational grid environments is how to effectively use various resources in the system, such as CPU cycle, memory, communication network, and data storage. There are many effective heuristic algorithms for scheduling in the computational grid, however most scheduling strategies have no theoretical guarantee at all. In this paper, a cost-based online scheduling algorithm is presented for job assignment in the grid environment with theoretical guarantee. Firstly, a scheduling framework is described, where the grid environment is characterized, and the online job model is defined. Secondly, the cost-based online scheduling algorithm is presented where costs of resources are exponential functions of their loads, and the performance of this algorithm is theoretically analyzed against the performance of the optimal offline algorithm. Finally, we implement the algorithm in the grid simulation environment, and compare the performance of the presented algorithm with the other three algorithms, and experimental results indicate that the cost-based online scheduling algorithm can outperform the other three online algorithms.

  • QoS Provisioning in the EPON Systems with Traffic-Class Burst-Polling Based Delta DBA

    Yeon-Mo YANG  Ji-Myong NHO  Nitaigour Premchand MAHALIK  Kiseon KIM  Byung-Ha AHN  

     
    PAPER-Optical Fiber for Communications

      Vol:
    E89-B No:2
      Page(s):
    419-426

    As an alternative solution to provide the quality of services (QoS) for broadband access over Ethernet Passive Optical Network (EPON), we present the usage of MAC control message for plural class queues and a traffic-class burst-polling based delta dynamic bandwidth allocation (DBA), referred to as TCBP-DDBA, scheme. For better QoS support, the TCBP-DDBA minimizes packet delays and delay variations for expedited forwarding packet and maximizes throughput for assured forwarding and best effort packets. The network resources are efficiently utilized and adaptively allocated to the three traffic classes for the given unbalanced traffic conditions by guaranteeing the requested QoS. Simulation results using OPNET show that the TCBP-DDBA scheme performs well in comparison to the conventional unit-based allocation scheme over the measurement parameters such as: packet delay, packet delay variation, and channel utilization.

  • Performance Comparison of Task Allocation Schemes Depending upon Resource Availability in a Grid Computing Environment

    Hiroshi YAMAMOTO  Kenji KAWAHARA  Tetsuya TAKINE  Yuji OIE  

     
    PAPER-Performance Evaluation

      Vol:
    E89-D No:2
      Page(s):
    459-468

    Recent improvements in the performance of end-computers and networks have made it feasible to construct a grid system over the Internet. A grid environment consists of many computers, each having a set of components and a distinct performance. These computers are shared among many users and managed in a distributed manner. Thus, it is important to focus on a situation in which the computers are used unevenly due to decentralized management by different task schedulers. In this study, which is a preliminary investigation of the performance of task allocation schemes employed in a decentralized environment, the average execution time of a long-lived task is analytically derived using the M/G/1-PS queue. Furthermore, assuming a more realistic condition, we evaluate the performance of some task allocation schemes adopted in the analysis, and clarify which scheme is applicable to a realistic grid environment.

  • Hierarchically Aggregated Fair Queueing (HAFQ) for Per-Flow Fair Bandwidth Allocation

    Ichinoshin MAKI  Hideyuki SHIMONISHI  Tutomu MURASE  Masayuki MURATA  

     
    PAPER-Switching for Communications

      Vol:
    E89-B No:2
      Page(s):
    427-435

    Because of the development of recent broadband access technologies, fair service among users is becoming more important goal. The most promising router mechanisms for providing fair service is per-flow traffic management. However, it is difficult to implement in high-speed core routers because per-flow state management is prohibitively expensive; thus, a large number of flows are aggregated into a small number of queues. This is not an acceptable situation because fairness degrades as the number of flows so aggregated increases. In this paper, we propose a new traffic management scheme called Hierarchically Aggregated Fair Queueing (HAFQ) to provide per-flow fair service. Our scheme can adjust flow aggregation levels according to the queue handling capability of various routers. This means the proposed scheme scales well in high-speed networks. HAFQ improves the fairness among aggregated flows by estimating the number of flows aggregated in a queue and allocating bandwidth to the queue proportionally. In addition, since HAFQ can identify flows having higher arrival rates simultaneously while estimating the number of flows, it enhances the fairness by preferentially dropping their packets. We show that our scheme can provide per-flow fair service through extensive simulation and experiments using a network processor. Since the currently available network processors (Intel IXP1200 in our case) are not high capacity, we also give extensive discussions on the applicability of our scheme to the high-speed core routers.

  • Leaky-Wave Antennas with Low Sidelobes Based on Stub-Loaded Ridge-Rectangular Waveguides

    Mikio TSUJI  Taiji HARADA  Hiroyuki DEGUCHI  Hiroshi SHIGESAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:2
      Page(s):
    564-569

    We present a design procedure of a leaky-wave antenna with low sidelobes based on the stub-loaded ridge-rectangular waveguide. As a typical example, we desig the antenna with the Taylor distribution of -30 dB sidelobes and fabricated it. The agreement between the measured and the numerical results validate the proposed antenna.

  • Influence of Inaccurate Performance Prediction on Task Scheduling in a Grid Environment

    Yuanyuan ZHANG  Yasushi INOGUCHI  

     
    PAPER-Performance Evaluation

      Vol:
    E89-D No:2
      Page(s):
    479-486

    Efficient task scheduling is critical for achieving high performance in grid computing systems. Existing task scheduling algorithms for grid environments usually assume that the performance prediction for both tasks and resources is perfectly accurate. In practice, however, it is very difficult to achieve such an accurate prediction in a heterogeneous and dynamic grid environment. Therefore, the performance of a task scheduling algorithm may be significantly influenced by prediction inaccuracy. In this paper, we study the influence of inaccurate predictions on task scheduling in the contexts of task selection and processor selection, which are two critical phases in task scheduling algorithms. We develop formulas for the misprediction degree, which is defined as the probability that the predicted values for the performances of tasks and processors reveal different orders from their real values. Based on these formulas, we also investigate the effect of several key parameters on the misprediction degree. Finally, we conduct extensive simulation for the sensitivities of some existing task scheduling algorithms to the prediction errors.

  • Distributing Requests by (around k)-Bounded Load-Balancing in Web Server Cluster with High Scalability

    MinHwan OK  Myong-soon PARK  

     
    PAPER-Parallel/Distributed Algorithms

      Vol:
    E89-D No:2
      Page(s):
    663-672

    Popular Web sites form their Web servers into Web server clusters. The Web server cluster operates with a load-balancing algorithm to distribute Web requests evenly among Web servers. The load-balancing algorithms founded on conventional periodic load-information update mechanism are not scalable due to the synchronized update of load-information. We propose a load-balancing algorithm that the load-information update is not synchronized by exploiting variant execution times of executing scripts in dynamic Web pages. The load-information of each server is updated 'individually' by a new load-information update mechanism, and the proposed algorithm supports high scalability based on this individual update. Simulation results have proven the improvement in system performance through another aspect of high scalability. Furthermore, the proposed algorithm guarantees some level of QoS for Web clients by fairly distributing requests. A fundamental merit of the proposed algorithm is its simplicity, which supports higher throughput of the Web switch.

  • A Convergence Study of the Discrete FGDLS Algorithm

    Sabin TABIRCA  Tatiana TABIRCA  Laurence T. YANG  

     
    PAPER-Parallel/Distributed Algorithms

      Vol:
    E89-D No:2
      Page(s):
    673-678

    The Feedback-Guided Dynamic Loop Scheduling (FGDLS) algorithm [1] is a recent dynamic approach to the scheduling of a parallel loop within a sequential outer loop. Earlier papers have analysed convergence under the assumption that the workload is a positive, continuous, function of a continuous argument (the iteration number). However, this assumption is unrealistic since it is known that the iteration number is a discrete variable. In this paper we extend the proof of convergence of the algorithm to the case where the iteration number is treated as a discrete variable. We are able to establish convergence of the FGDLS algorithm for the case when the workload is monotonically decreasing.

  • On the Architecture and Performance of Blueweb: A Bluetooth-Based Multihop Ad Hoc Network

    Chih-Min YU  Shiang-Jiun LIN  Chia-Chi HUANG  

     
    PAPER-Network

      Vol:
    E89-B No:2
      Page(s):
    482-489

    In this paper, we present Blueweb, a new Bluetooth-based multihop network with an efficient scatternet formation algorithm and a hybrid routing protocol. The Blueweb is designed from the original idea of Bluetree. Blueweb's scatternet formation uses two mechanisms. One is the role exchange mechanism in which only slave nodes serve as the role of relay through the whole scatternet. The other one is the return connection mechanism in which we convert the scatternet from a tree-shaped to a web-shaped topology. Meanwhile, a modified source routing protocol is designed for Blueweb in which we combine the proactive method with the reactive method to discover the optimal path for packet transmission. Furthermore, using computer simulations we compared the system performance of Blueweb and Bluetree with both a static model and a uniform traffic model. With the static model we evaluate the scatternet performance and with the uniform traffic model we evaluate the transmission performance. Our simulation results show that Blueweb achieves superior system performance than Bluetree on both scatternet performance and transmission performance.

  • HiPeer: A Highly Reliable P2P System

    Giscard WEPIWE  Plamen L. SIMEONOV  

     
    PAPER-Peer-to-Peer Computing

      Vol:
    E89-D No:2
      Page(s):
    570-580

    The paper presents HiPeer, a robust resource distribution and discovery algorithm that can be used for fast and fault-tolerant location of resources in P2P network environments. HiPeer defines a concentric multi-ring overlay networking topology, whereon dynamic network management methods are deployed. In terms of performance, HiPeer delivers of number of lowest bounds. We demonstrate that for any De Bruijn digraph of degree d 2 and diameter DDB HiPeer constructs a highly reliable network, where each node maintains a routing table with at most 2d+2 entries independent of the number N of nodes in the system. Further, we show that any existing resource in the network with at most d nodes can be found within at most DHiPeer = log d(N(d-1)+d)-1 overlay hops. This result is as close to the Moore bound [1] as the query path length in other outstanding P2P proposals based on the De Bruijn digraphs. Thus, we argue that HiPeer defines a highly connected network with connectivity d and the lowest yet known lookup bound DHiPeer. Moreover, we show that any node's "join or leave" operation in HiPeer implies a constant expected reorganization cost of the magnitude order of O(d) control messages.

  • Parity Placement Schemes to Facilitate Recovery from Triple Column Disk Failure in Disk Array Systems

    Chih-Shing TAU  Tzone-I WANG  

     
    PAPER-Coding Theory

      Vol:
    E89-A No:2
      Page(s):
    583-591

    This paper presents two improved triple parity placement schemes, the HDD1 (Horizontal and Dual Diagonal) scheme and the HDD2 scheme, to enhance the reliability of a disk array system. Both the schemes can tolerate up to three column disk failures by using three types of parity information (horizontal, diagonal, and anti-diagonal parities) in a disk array. HDD1 scheme can decrease the frequency of bottlenecks because its horizontal and anti-diagonal parities are uniformly distributed over a disk array, with its diagonal parities placed in dedicated column disks. HDD2 scheme possesses one more column disks than HDD1 to store the horizontal parities and an additional diagonal parity; its anti-diagonal and diagonal parities are placed in the same way as in HDD1 scheme, only with a minor difference. The encoding and decoding algorithms of the two schemes are rather simple and straightforward, some steps of its procedure can even be executed in parallel, which makes the disk failure recovery faster.

  • Measuring the Perceived Importance of Speech Segments for Transmission over IP Networks Open Access

    Yusuke HIWASAKI  Toru MORINAGA  Jotaro IKEDO  Akitoshi KATAOKA  

     
    PAPER

      Vol:
    E89-B No:2
      Page(s):
    326-333

    This paper presents a way of using a linear regression model to produce a single-valued criterion that indicates the perceived importance of each block in a stream of speech blocks. This method is superior to the conventional approach, voice activity detection (VAD), in that it provides a dynamically changing priority value for speech segments with finer granularity. The approach can be used in conjunction with scalable speech coding techniques in the context of IP QoS services to achieve a flexible form of quality control for speech transmission. A simple linear regression model is used to estimate a mean opinion score (MOS) of the various cases of missing speech segments. The estimated MOS is a continuous value that can be mapped to priority levels with arbitrary granularity. Through subjective evaluation, we show the validity of the calculated priority values.

  • A Security Middleware Model for Real-Time Applications on Grids

    Tao XIE  Xiao QIN  

     
    PAPER-Grid Computing

      Vol:
    E89-D No:2
      Page(s):
    631-638

    Real-time applications are indispensable for conducting research and business in government, industry, and academic organizations. Recently, real-time applications with security requirements increasingly emerged in large-scale distributed systems such as Grids. However, the complexities and specialties of diverse security mechanisms dissuade users from employing existing security services for their applications. To effectively tackle this problem, in this paper we propose a security middleware (SMW) model from which security-sensitive real-time applications are enabled to exploit a variety of security services to enhance the trustworthy executions of the applications. A quality of security control manager (QSCM), a centerpiece of the SMW model, has been designed and implemented to achieve a flexible trade-off between overheads caused by security services and system performance, especially under situations where available resources are dynamically changing and insufficient. A security-aware scheduling mechanism, which plays an important role in QSCM, is capable of maximizing quality of security for real-time applications running in distributed systems as large-scale as Grids. Our empirical studies based on real world traces from a supercomputing center demonstratively show that the proposed model can significantly improve the performance of Grids in terms of both security and schedulability.

  • A Scheduling Method Based on the Rent and Loan Information

    Miki FUKUYAMA  Masatoshi SHIMAKAGE  Atsuo HAZEYAMA  

     
    PAPER-Office Information Systems

      Vol:
    E89-D No:2
      Page(s):
    798-805

    In everyday life, a situation often occurs wherein two or more persons with different personal schedules must determine a single job schedule. The authors focus on the practical concept of rent and loan and propose a scheduling system. This system generates a schedule that automatically coordinates with a state involving minimum rent and loan. They also propose a method that employs the analytic network process (ANP) for setting individual priorities based on the rent and loan information. Furthermore, the authors implement the proposed system as a simulation system and verify whether it generates a fair schedule by computing the sum of the rent and loan of different individuals. The result shows that in comparison with human scheduling, the proposed method generates a fairer schedule by computing the rent and loan of each individual.

2541-2560hit(4570hit)