The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

5541-5560hit(16314hit)

  • On the Overflow Probability of Fixed-to-Variable Length Codes with Side Information

    Ryo NOMURA  Toshiyasu MATSUSHIMA  

     
    PAPER-Source Coding

      Vol:
    E94-A No:11
      Page(s):
    2083-2091

    The overflow probability is one of criteria that evaluate the performance of fixed-to-variable length (FV) codes. In the single source coding problem, there were many researches on the overflow probability. Recently, the source coding problem for correlated sources, such as Slepian-Wolf coding problem or source coding problem with side information, is one of main topics in information theory. In this paper, we consider the source coding problem with side information. In particular, we consider the FV code in the case that the encoder and the decoder can see side information. In this case, several codes were proposed and their mean code lengths were analyzed. However, there was no research about the overflow probability. We shall show two lemmas about the overflow probability. Then we obtain the condition that there exists a FV code under the condition that the overflow probability is smaller than or equal to some constant.

  • A Supervised Classification Approach for Measuring Relational Similarity between Word Pairs

    Danushka BOLLEGALA  Yutaka MATSUO  Mitsuru ISHIZUKA  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E94-D No:11
      Page(s):
    2227-2233

    Measuring the relational similarity between word pairs is important in numerous natural language processing tasks such as solving word analogy questions, classifying noun-modifier relations and disambiguating word senses. We propose a supervised classification method to measure the similarity between semantic relations that exist between words in two word pairs. First, each pair of words is represented by a vector of automatically extracted lexical patterns. Then a binary Support Vector Machine is trained to recognize word pairs with similar semantic relations to a given word pair. To train and evaluate the proposed method, we use a benchmark dataset that contains 374 SAT multiple-choice word-analogy questions. To represent the relations that exist between two word pairs, we experiment with 11 different feature functions, including both symmetric and asymmetric feature functions. Our experimental results show that the proposed method outperforms several previously proposed relational similarity measures on this benchmark dataset, achieving an SAT score of 46.9.

  • FPGA-Specific Custom VLIW Architecture for Arbitrary Precision Floating-Point Arithmetic

    Yuanwu LEI  Yong DOU  Jie ZHOU  

     
    PAPER-Computer System

      Vol:
    E94-D No:11
      Page(s):
    2173-2183

    Many scientific applications require efficient variable-precision floating-point arithmetic. This paper presents a special-purpose Very Large Instruction Word (VLIW) architecture for variable precision floating-point arithmetic (VV-Processor) on FPGA. The proposed processor uses a unified hardware structure, equipped with multiple custom variable-precision arithmetic units, to implement various variable-precision algebraic and transcendental functions. The performance is improved through the explicitly parallel technology of VLIW instruction and by dynamically varying the precision of intermediate computation. We take division and exponential function as examples to illustrate the design of variable-precision elementary algorithms in VV-Processor. Finally, we create a prototype of VV-Processor unit on a Xilinx XC6VLX760-2FF1760 FPGA chip. The experimental results show that one VV-Processor unit, running at 253 MHz, outperforms the approach of a software-based library running on an Intel Core i3 530 CPU at 2.93 GHz by a factor of 5X-37X for basic variable-precision arithmetic operations and elementary functions.

  • Development of Cryogenic Readout Electronics for Far-Infrared Astronomical Focal Plane Array Open Access

    Hirohisa NAGATA  Takehiko WADA  Hirokazu IKEDA  Yasuo ARAI  Morifumi OHNO  Koichi NAGASE  

     
    INVITED PAPER

      Vol:
    E94-B No:11
      Page(s):
    2952-2960

    We have been developing low power cryogenic readout electronics for space borne large format far-infrared image sensors. As the circuit elements, a fully-depleted-silicon-on-insulator (FD-SOI) CMOS process was adopted because they keep good static performance even at 4.2 K where where various anomalous behaviors are seen for other types of CMOS transistors. We have designed and fabricated several test circuits with the FD-SOI CMOS process and confirmed that an operational amplifier successfully works with an open loop gain over 1000 and with a power consumption around 1.3 µW as designed, and the basic digital circuits worked well. These results prove that the FD-SOI CMOS process is a promising candidate of the ideal cryogenic readout electronics for far-infrared astronomical focal plane array sensors.

  • High Performance Organic Semiconductors with High Field-Effect Mobilities and Low Contact Resistances for Flexible Displays Open Access

    Kota TERAI  Emi KAWASHIMA  Naoki KURIHARA  Hideaki NAGASHIMA  Hirofumi KONDO  Masatoshi SAITO  Hiroaki NAKAMURA  

     
    INVITED PAPER

      Vol:
    E94-C No:11
      Page(s):
    1713-1719

    We have succeeded in developing high-performance p-type of organic semiconductors with phenylethynyl groups, which have high filed-effect mobilities (>3 cm2V-1s-1) by improving molecular planarity. A single crystal of the organic semiconductors has a herringbone structure. It plays an important role for carrier transport. In addition, we found that they had lower contact resistances to Au electrodes as well. Then, we used the materials for the carrier injection layer deposited onto another organic semiconductor we developed recently, which achieved a high field-effect mobility, and a low threshold voltage (Vth).

  • Optical Wireless N-CSK with Modified Pseudo Orthogonal M-Sequence Sets

    Yusuke KOZAWA  Hiromasa HABUCHI  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E94-A No:11
      Page(s):
    2188-2193

    In this paper, N-CSK (N parallel Codes Shift Keying) using modified pseudo orthogonal M-sequence sets (MPOMSs) to realize the parallel combinatory spread spectrum (PC/SS) communication system for the optical communications is proposed. Moreover, the upper bound of data transmission rate and the bit error rate (BER) performance of this N-CSK system using the chip-level detection are evaluated through theoretical analysis by taking into account the scintillation, background-noise, avalanche photo-diode (APD) noise, thermal noise, and signal dependence noise. It is shown that the upper bound of data transmission rate of the proposed system is better than those of OOK/CDM and SIK/CDM. Moreover, the upper bound of data transmission rate of the proposed system can achieve about 1.5 [bit/chip] when the code length of MPOMS is 64 [chip].

  • Complexity Reduced Transmit Diversity Scheme for Time Domain Synchronous OFDM Systems

    Zhaocheng WANG  Jintao WANG  Linglong DAI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E94-B No:11
      Page(s):
    3116-3124

    This paper proposes a novel scheme to reduce the complexity of existing transmit diversity solutions to time domain synchronous OFDM (TDS-OFDM). The space shifted constant amplitude zero autocorrelation (CAZAC) sequence based preamble is proposed for channel estimation. Two flexible frame structures are proposed for adaptive system design as well as cyclicity reconstruction of the received inverse discrete Fourier transform (IDFT) block. With regard to channel estimation and cyclicity reconstruction, the complexity of the proposed scheme is only around 7.20% of that of the conventional solutions. Simulation results demonstrate that better bit error rate (BER) performance can be achieved over doubly selective channels.

  • Power Dissipation Analysis of IEEE 802.15.4 Distributed Multi-Hop Wireless Sensor Networks

    Muhammad TARIQ  Zhenyu ZHOU  Yong-Jin PARK  Takuro SATO  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E94-A No:11
      Page(s):
    2279-2286

    The involvement of IEEE 802.15.4 Wireless Sensor Networks (WSNs) in diverse applications has made the realistic analysis of sensor power dissipation in distributed network environments an essential research issue. In this paper, we propose and thoroughly analyze a power dissipation model for Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) based IEEE 802.15.4 distributed multi-hop WSNs. Our model takes the loss rate of frames, neighbor sensors density in communication range of a sensor, number of hops, distance of source to the sink, and density of the network into account. We evaluate the impact of these factors on overall power dissipation. We also perform comprehensive analysis of overheads caused by message routing through multi-hop distributed networks. We validate our proposed model through Monte Carlo simulations. Results show that our power dissipation model is more realistic compared to other proposed models in terms of accuracy and multiplicity of the environments.

  • Optimized Implementation of Pedestrian Tracking Using Multiple Cues on GPU

    Ryusuke MIYAMOTO  Hiroki SUGANO  

     
    PAPER-Image Processing

      Vol:
    E94-A No:11
      Page(s):
    2323-2333

    Nowadays, pedestrian recognition for automotive and security applications that require accurate recognition in images taken from distant observation points is a recent challenging problem in the field of computer vision. To achieve accurate recognition, both detection and tracking must be precise. For detection, some excellent schemes suitable for pedestrian recognition from distant observation points are proposed, however, no tracking schemes can achieve sufficient performance. To construct an accurate tracking scheme suitable for pedestrian recognition from distant observation points, we propose a novel pedestrian tracking scheme using multiple cues: HSV histograms and HOG features. Experimental results show that the proposed scheme can properly track a target pedestrian where tracking schemes using only a single cue fails. Moreover, we implement the proposed scheme on NVIDIA® TeslaTM C1060 processor, one of the latest GPU, to achieve real-time processing of the proposed scheme. Experimental results show that computation time required for tracking of a frame by our implementation is reduced to 8.80 ms even though Intel® CoreTM i7 CPU 975 @ 3.33 GHz spends 111 ms.

  • Adaptive Interference Suppression Strategies for a Satellite On-Board Filter Bank under Tone-Type Interfering Environments

    Junil AHN  Kiseon KIM  

     
    LETTER

      Vol:
    E94-B No:11
      Page(s):
    2978-2982

    Adaptive interference suppression strategies based on the transform domain approach are proposed for a satellite on-board filter bank under tone-type interferences. In the proposed methods, the three kinds of algorithms to compute the threshold level are jointly employed with the notch filter or the clipper. Simulation results show that the proposed schemes significantly improve performance under interfering environments, compared to the no suppression case.

  • A Semidefinite Relaxation Approach to Spreading Sequence Estimation for DS-SS Signals

    Hua Guo ZHANG  Qing MOU  Hong Shu LIAO  Ping WEI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:11
      Page(s):
    3163-3167

    In non-cooperative scenarios, the estimation of direct sequence spread spectrum (DS-SS) signals has to be done in a blind manner. In this letter, we consider the spreading sequence estimation problem for DS-SS signals. First, the maximum likelihood estimate (MLE) of spreading sequence is derived, then a semidefinite relaxation (SDR) approach is proposed to cope with the exponential complexity of performing MLE. Simulation results demonstrate that the proposed approach provides significant performance improvements compared to existing methods, especially in the case of low numbers of data samples and low signal-to-noise ratio (SNR) situations.

  • Data Transmission Using Original Coils in Resonant Wireless Power Transmission

    Takashi MARUYAMA  Tatsuya SHIMIZU  Mamoru AKIMOTO  Kazuki MARUTA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:11
      Page(s):
    3172-3174

    We propose a data transmission method for resonant wireless power transmission systems. In order to transmit data, we use the coils originally designed for power transmission, no additional antennas are required. We focus on uplink data transmission and adopt the load modulation technique. This configuration yields mid-range data transmission without transmitting power. In addition, the proposal enables simultaneous power feeding and uplink data transmission. We make a prototype demonstrating resonant wireless power transmission and measure its S-parameter under some load conditions. The results confirm the potential of load modulation in supporting uplink data transmission. Additionally, the results are elucidated by analyzing an equivalent circuit. Measured S-parameter and equivalent circuit response are found to be similar.

  • A User Scheduling with Minimum-Rate Requirement for Maximum Sum-Rate in MIMO-BC

    Seungkyu CHOI  Chungyong LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:11
      Page(s):
    3179-3182

    This letter considers a sum-rate maximization problem with user scheduling wherein each user has a minimum-rate requirement in multiple-input-multiple-output broadcast channel. The multiuser strategy used in the user scheduling is a joint transceiver scheme with block diagonal geometric mean decomposition. Since optimum solution to the user scheduling problem generally requires exhaustive search, we propose a suboptimum user scheduling algorithm with each user's minimum-rate requirement as the main constraint. In order to satisfy maximum sum-rate and minimum-rate constraints simultaneously, we additionally consider power allocation for scheduled users. Simulation results show that the proposed user scheduling algorithm, together with the user power allocation, achieves sum-rate close to the exhaustive search, while also guarantees minimum-rate requirement of each user.

  • Optimal Multi-Frame Content Transmission in Disruption Tolerant Networking

    Jin QIAN  Dacheng LIU  Yong LI  Ye TAO  Tao XING  

     
    LETTER-Network

      Vol:
    E94-B No:11
      Page(s):
    3132-3136

    Due to the lack of end-to-end paths between the communication source and destination in the Disruption Tolerant Network (DTN), its routing employs the store-carry-and-forward mechanism. In order to provide communication service in the DTN where there is only intermittent connectivity between nodes, a variety of epidemic-style routing algorithms have been proposed to achieve high message delivery probability at the cost of energy consumption. In this contribution, we investigate the problem of optimal multi-frame content transmission. By formulating the optimization problem with a Markov model, we derive the optimal policies under the two conditions of with and without energy constraint. We also investigate the performance of the proposed optimal policies through extensive numerical analyses, and conclude that the optimal policies give the best performance and the energy constraint critically degrades the system performance in the multi-frame content transmission.

  • Optimal Beamforming in Two-Way Relay Networks with Cognitive Radio Capabilities

    Ardalan ALIZADEH  Seyed Mohammad-Sajad SADOUGH  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:11
      Page(s):
    3089-3097

    In this paper, we present a cognitive relay network with two primary transceivers that communicate via several distributed relay terminals. Spectrum sensing is deployed at the relays to sense the absence/presence of the primary transceivers based on energy detection. The primary network utilizes a two-step two-way amplify-and-forward (AF) scheme by using the cognitive radio (CR) terminals as its relay nodes when the primary network is not in operation, in contrast, the CRs communicate with their own base station (BS). In the first relaying step, the primary transceivers send their signal to the CRs/relays. Distributed beamforming is then performed in the second relaying step. Our aim is to set the beamforming weights so as to minimize the total power dissipated in the relay network while satisfying a target signal-to-noise ratio (SNR) at the primary transceivers and at the cognitive BS. This is achieved by solving an optimization problem that we formulate as a nonconvex quadratically constrained quadratic program (QCQP). This problem is solved efficiently by semidefinite relaxation (SDR) and Lagrangian duality. Simulation results are provided to demonstrate the superiority of our proposed technique, compared to classical beamforming techniques, in terms of power reduction.

  • Development and Feasibility Flight Test of TIS-B System for Situational Awareness Enhancement

    Takuya OTSUYAMA  Makoto SHIOJI  Shigeru OZEKI  

     
    LETTER

      Vol:
    E94-B No:11
      Page(s):
    2991-2993

    The air traffic situational awareness is an essential factor for flight safety and efficiency. Today, pilots have only two methods for situational awareness, through visual acquisition or with traffic information via voice messages from Air Traffic Controllers. These methods have limitations in reducing aircraft separation because of their delay in acquiring traffic. To improve the acquisition of traffic information, airborne surveillance with ADS-B/TIS-B has been proposed. This paper reports on the prototype TIS-B system developed by ENRI and on the results of evaluations with flight testing.

  • A Model of Luminance-Adaptation for Quantifying Brightness in Mixed Visual Adapting Conditions

    Sung-Hak LEE  Kyu-Ik SOHNG  

     
    BRIEF PAPER

      Vol:
    E94-C No:11
      Page(s):
    1768-1772

    The color appearance model gives us the proper brightness information and optimized display conditions for various viewing surroundings. However on conditions of low-level illumination or low background reflectivity, the performance of brightness estimation is relatively poor. Therefore, through our psychophysical experiments, we investigated the state of visual luminance adaptation for comparing single adaptations and mixed adaptations under a complex viewing field, and we also investigated background adaptation degrees and exponential nonlinearity factors for mixed adaptation models. It provides more accurate brightness predictions according to different adapting luminance, which is decided from object and background luminance.

  • Indoor Positioning System Using Digital Audio Watermarking

    Yuta NAKASHIMA  Ryosuke KANETO  Noboru BABAGUCHI  

     
    PAPER-Information Network

      Vol:
    E94-D No:11
      Page(s):
    2201-2211

    Recently, a number of location-based services such as navigation and mobile advertising have been proposed. Such services require real-time user positions. Since a global positioning system (GPS), which is one of the most well-known techniques for real-time positioning, is unsuitable for indoor uses due to unavailability of GPS signals, many indoor positioning systems (IPSs) using WLAN, radio frequency identification tags, and so forth have been proposed. However, most of them suffer from high installation costs. In this paper, we propose a novel IPS for real-time positioning that utilizes a digital audio watermarking technique. The proposed IPS first embeds watermarks into an audio signal to generate watermarked signals, each of which is then emitted from a corresponding speaker installed in a target environment. A user of the proposed IPS receives the watermarked signals with a mobile device equipped with a microphone, and the watermarks are detected in the received signal. For positioning, we model various effects upon watermarks due to propagation in the air, i.e., delays, attenuation, and diffraction. The model enables the proposed IPS to accurately locate the user based on the watermarks detected in the received signal. The proposed IPS can be easily deployed with a low installation cost because the IPS can work with off-the-shelf speakers that have been already installed in most of the indoor environments such as department stores, amusement arcades, and airports. We experimentally evaluate the accuracy of positioning and show that the proposed IPS locates the user in a 6 m by 7.5 m room with root mean squared error of 2.25 m on average. The results also demonstrate the potential capability of real-time positioning with the proposed IPS.

  • Decision Tree-Based Acoustic Models for Speech Recognition with Improved Smoothness

    Masami AKAMINE  Jitendra AJMERA  

     
    PAPER-Speech and Hearing

      Vol:
    E94-D No:11
      Page(s):
    2250-2258

    This paper proposes likelihood smoothing techniques to improve decision tree-based acoustic models, where decision trees are used as replacements for Gaussian mixture models to compute the observation likelihoods for a given HMM state in a speech recognition system. Decision trees have a number of advantageous properties, such as not imposing restrictions on the number or types of features, and automatically performing feature selection. This paper describes basic configurations of decision tree-based acoustic models and proposes two methods to improve the robustness of the basic model: DT mixture models and soft decisions for continuous features. Experimental results for the Aurora 2 speech database show that a system using decision trees offers state-of-the-art performance, even without taking advantage of its full potential and soft decisions improve the performance of DT-based acoustic models with 16.8% relative error rate reduction over hard decisions.

  • Threshold Anonymous Password-Authenticated Key Exchange Secure against Insider Attacks

    SeongHan SHIN  Kazukuni KOBARA  Hideki IMAI  

     
    PAPER

      Vol:
    E94-D No:11
      Page(s):
    2095-2110

    An anonymous password-authenticated key exchange (PAKE) protocol is designed to provide both password-only authentication and client anonymity against a semi-honest server, who honestly follows the protocol. In INDOCRYPT2008, Yang and Zhang [26] proposed a new anonymous PAKE (NAPAKE) protocol and its threshold (D-NAPAKE) which they claimed to be secure against insider attacks. In this paper, we first show that the D-NAPAKE protocol [26] is completely insecure against insider attacks unlike their claim. Specifically, only one legitimate client can freely impersonate any subgroup of clients (the threshold t > 1) to the server. After giving a security model that captures insider attacks, we propose a threshold anonymous PAKE (called, TAP+) protocol which provides security against insider attacks. Moreover, we prove that the TAP+ protocol has semantic security of session keys against active attacks as well as insider attacks under the computational Diffie-Hellman problem, and provides client anonymity against a semi-honest server, who honestly follows the protocol. Finally, several discussions are followed: 1) We also show another threshold anonymous PAKE protocol by applying our RATIONALE to the non-threshold anonymous PAKE (VEAP) protocol [23]; and 2) We give the efficiency comparison, security consideration and implementation issue of the TAP+ protocol.

5541-5560hit(16314hit)