The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

5421-5440hit(16314hit)

  • A Uniform Asymptotic Solution for Reflection and Beam Shift of a Gaussian Beam at a Plane Dielectric Interface

    Dinh Trong QUANG  Keiji GOTO  Toru KAWANO  Toyohiko ISHIHARA  

     
    PAPER-Scattering and Diffraction

      Vol:
    E95-C No:1
      Page(s):
    16-26

    The problem of a Gaussian beam that is incident on a plane dielectric interface from a denser dielectric medium to a rarer one and is reflected at the interface has been important research subjects studied by many researchers. In this paper, we have obtained a novel uniform asymptotic solution for reflection and beam shift of the Gaussian beam that is incident on the interface from the denser medium. The uniform asymptotic solution consists of the geometrically reflected beam, the lateral beam if any, and the newly derived transition beam which plays an important role in the transition region near the critical angle of the total reflection. We have confirmed the validity of the uniform asymptotic solution by comparing with the reference solution obtained numerically from the integral representation. We have shown that, in addition to the Goos-Hanchen shift and the angular shift, the Gaussian beam is shifted to either direction by the interference of the geometrically reflected beam and the lateral beam near the critical angle of the total reflection.

  • Evaluation of a Multi Cluster Gaussian Scatterer Distribution Channel Model

    Guillermo GALAVIZ  David H. COVARRUBIAS  Angel G. ANDRADE  

     
    LETTER-Antennas and Propagation

      Vol:
    E95-B No:1
      Page(s):
    296-299

    In this letter we perform an evaluation procedure of the Multi-Cluster Gaussian Scatterer Distribution Channel model. We present analytical expressions that allow to calculate the Angle of Arrival and Time of Arrival statistics directly and derive an expression to calculate the Angle Spread. The use of these expressions allows channel evaluation without the need for multiple ray simulation, thus reducing computational burden.

  • The IDR-Based IPNMs for the Fast Boundary Element Analysis of Electromagnetic Wave Multiple Scattering

    Norimasa NAKASHIMA  Seiji FUJINO  Mitsuo TATEIBA  

     
    PAPER-Numerical Techniques

      Vol:
    E95-C No:1
      Page(s):
    63-70

    This paper presents the iterative progressive numerical methods (IPNMs) based on the induced dimension reduction (IDR) theorem. The IDR theorem is mainly utilized for the development of new nonstationary linear iterative solvers. On the other hand, the use of the IDR theorem enables to revise the classical linear iterative solvers like the Jacobi, the Gauss-Seidel (GS), the relaxed Jacobi, the successive overrelaxation (SOR), and the symmetric SOR (SSOR) methods. The new IPNMs are based on the revised solvers because the original one is similar to the Jacobi method. In the new IPNMs, namely the IDR-based IPNMs, we repeatedly solve linear systems of equations by using a nonstationary linear iterative solver. An initial guess and a stopping criterion are discussed in order to realize a fast computation. We treat electromagnetic wave scattering from 27 perfectly electric conducting spheres and reports comparatively the performance of the IDR-based IPNMs. However, the IDR-based SOR- and the IDR-based SSOR-type IPNMs are not subject to the above numerical test in this paper because of the problem with an optimal relaxation parameter. The performance evaluation reveals that the IDR-based IPNMs are better than the conventional ones in terms of the net computation time and the application range for the distance between objects. The IDR-based GS-type IPNM is the best among the conventional and the IDR-based IPNMs and converges 5 times faster than a standard computation by way of the boundary element method.

  • Error Analysis of Multilevel Fast Multipole Algorithm for Electromagnetic Scattering Problems

    Seiya KISHIMOTO  Shinichiro OHNUKI  

     
    PAPER-Numerical Techniques

      Vol:
    E95-C No:1
      Page(s):
    71-78

    Error analysis of the multilevel fast multipole algorithm is studied for electromagnetic scattering problems. We propose novel error prediction and control methods and verify that the computational error for scattering problems with over one million unknowns can be precisely controlled under desired digits of accuracy. Optimum selection of truncation numbers to minimize computational error also will be discussed.

  • Non-coherent Power Decomposition-Based Energy Detection for Cooperative Spectrum Sensing in Cognitive Radio Networks

    Bingxuan ZHAO  Shigeru SHIMAMOTO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:1
      Page(s):
    234-242

    As the fundamental component of dynamic spectrum access, implementing spectrum sensing is one of the most important goals in cognitive radio networks due to its key functions of protecting licensed primary users from harmful interference and identifying spectrum holes for the improvement of spectrum utilization. However, its performance is generally compromised by the interference from adjacent primary channels. To cope with such interference and improve detection performance, this paper proposes a non-coherent power decomposition-based energy detection method for cooperative spectrum sensing. Due to its use of power decomposition, interference cancellation can be applied in energy detection. The proposed power decomposition does not require any prior knowledge of the primary signals. The power detection with its interference cancellation can be implemented indirectly by solving a non-homogeneous linear equation set with a coefficient matrix that involves only the distances between primary transmitters and cognitive secondary users (SUs). The optimal number of SUs for sensing a single channel and the number of channels that can be sensed simultaneously are also derived. The simulation results show that the proposed method is able to cope with the expected interference variation and achieve higher probability of detection and lower probability of false alarm than the conventional method in both hard combining and soft combining scenarios.

  • Iterative Multi-Track ITI Canceller for Nonbinary-LDPC-Coded Two-Dimensional Magnetic Recording

    Masaaki FUJII  

     
    PAPER-Storage Technology

      Vol:
    E95-C No:1
      Page(s):
    163-171

    An iterative inter-track interference (ITI) cancelling scheme is described for multi-track signal detection in nonbinary (NB)-LDPC-coded two-dimensional magnetic recording. The multi-track iterative ITI canceller that we propose consists of multi-track soft interference cancellers (SICs), two-dimensional partial response (TDPR) filters, noise-predictive max-log-MAP detectors, and an NB-LDPC decoder. TDPR filters using an ITI-suppressing tap-weight vector mitigate ITI in the first iteration. Multi-track SICs and TDPR filters adjusted to the residual two-dimensional ISI signals efficiently detect multi-track signals in the latter iterations. The simulation results demonstrated that our proposed iterative multi-track ITI canceller achieves frame error rates close to those obtained in a non-ITI case in media-noise-dominant environments when the both-side off-track ratio is up to 50%.

  • An Adaptive Handoff Triggering Mechanism for Vehicular Networks

    Luobei KUANG  Zhijun WANG  Ming XU  Yingwen CHEN  

     
    PAPER-ITS

      Vol:
    E95-A No:1
      Page(s):
    278-285

    Handoff plays an important role in vehicular networks due to high movement of vehicles. To provide seamless connectivity under Access Points (AP), this paper proposes an adaptive handoff triggering method to minimize communication time for a vehicle with an AP switch (i.e., whether and when to trigger a handoff process). In the proposed method, combined with an improved data transmission rate based trigger, handoff triggering decision is executed based on three different communication methods (called C-Dire, C-Relay and C-ALLRelay) to minimize the transmission delay when a vehicle moves from an AP to another. Transmission delay is derived through considering vehicle mobility and transmission rate diversity. The simulation results show that the proposed method is proven to be adaptive to vehicular networks.

  • Reduction Processing of the Position Estimation Error Using Transmitted Directivity Information

    Hiroyuki HATANO  Tomoharu MIZUTANI  Yoshihiko KUWAHARA  

     
    PAPER-ITS

      Vol:
    E95-A No:1
      Page(s):
    286-295

    We consider the position estimation system for targets which exist in near wide area. The system has multiple sensors and estimates the position with multiple receivers. In the past, if receivers were arranged on a straight line, the large position error in the same direction of the line is generated. In order to reduce the error, we propose a novel estimation algorithm using transmitter's directivity information. Our system use directional emission made by an array of antennas in a transmitter. In this paper, the error characteristic which should be solved is introduced firstly. After that, our algorithm is presented. Finally the performance of the error reduction is shown by computer simulations. And we also confirm the reduction by experimental trials. The results indicate good reduction of the error.

  • Known-Key Attacks on Rijndael with Large Blocks and Strengthening ShiftRow Parameter

    Yu SASAKI  

     
    PAPER-Symmetric Cryptography

      Vol:
    E95-A No:1
      Page(s):
    21-28

    In this paper, we present known-key attacks on block cipher Rijndael for 192-bit block and 256-bit block. Our attacks work up to 8 rounds for 192-bit block and 9 rounds for 256-bit block, which are one round longer than the previous best known-key attacks. We then search for the parameters for the ShiftRow operation which is stronger against our attacks than the one in the Rijndael specification. Finally, we show a parameter for 192-bit block which forces attackers to activate more bytes to generate a truncated differential path, and thus enhances the security against our attacks.

  • Feature Location in Source Code by Trace-Based Impact Analysis and Information Retrieval

    Zhengong CAI  Xiaohu YANG  Xinyu WANG  Aleksander J. KAVS  

     
    PAPER-Software System

      Vol:
    E95-D No:1
      Page(s):
    205-214

    Feature location is to identify source code that implements a given feature. It is essential for software maintenance and evolution. A large amount of research, including static analysis, dynamic analysis and the hybrid approaches, has been done on the feature location problems. The existing approaches either need plenty of scenarios or rely on domain experts heavily. This paper proposes a new approach to locate functional feature in source code by combining the change impact analysis and information retrieval. In this approach, the source code is instrumented and executed using a single scenario to obtain the execution trace. The execution trace is extended according to the control flow to cover all the potentially relevant classes. The classes are ranked by trace-based impact analysis and information retrieval. The ranking analysis takes advantages of the semantics and structural characteristics of source code. The identified results are of higher precision than the individual approaches. Finally, two open source cases have been studied and the efficiency of the proposed approach is verified.

  • Kernel Based Asymmetric Learning for Software Defect Prediction

    Ying MA  Guangchun LUO  Hao CHEN  

     
    LETTER-Software Engineering

      Vol:
    E95-D No:1
      Page(s):
    267-270

    A kernel based asymmetric learning method is developed for software defect prediction. This method improves the performance of the predictor on class imbalanced data, since it is based on kernel principal component analysis. An experiment validates its effectiveness.

  • Underground Electric Signal at the Occurrence of the Niigataken Chuetsu-oki Earthquake in 2007, Japan

    Kan OKUBO  Akihiro TAKEUCHI  Yukinobu NAKAMURA  Nobunao TAKEUCHI  

     
    BRIEF PAPER-Electromagnetic Compatibility

      Vol:
    E95-C No:1
      Page(s):
    110-114

    The electric field mill in our underground observation room detected a co-seismic electromagnetic signal in the vertical electrostatic field ca. 8 s after the origin time of the Niigataken Chuetsu-oki Earthquake in 2007, but ca. 30 s before the arrival time of the P-waves.

  • Efficient Sequential Architecture of AES CCM for the IEEE 802.16e

    Jae Deok JI  Seok Won JUNG  Jongin LIM  

     
    LETTER-Privacy

      Vol:
    E95-D No:1
      Page(s):
    185-187

    In this paper, we propose efficient sequential AES CCM architecture for the IEEE 802.16e. In the proposed architecture, only one AES encryption core is used and the operation of the CTR and the CBC-MAC is processed concurrently within one round. With this design approach, we can design sequential AES CCM architecture having 570 Mbps@102.4 MHz throughput and 1,397 slices at a Spartan3 3s5000 device.

  • Security Flaw of an Improved User Authentication Scheme with User Anonymity for Wireless Communications

    Hu XIONG  Xiaofeng WANG  Fagen LI  

     
    LETTER

      Vol:
    E95-A No:1
      Page(s):
    256-258

    Recently, Kang et al. discussed some security flaws of Wu et al.'s and Wei et al.'s authentication schemes that guarantee user anonymity in wireless communications and showed how to overcome the problems regarding anonymity and the forged login messages. However, we will show that Kang et al.'s improved scheme still did not provide user anonymity as they claimed.

  • Optimization of Field Decomposition for a Mode Matching Technique

    Shinichiro OHNUKI  Takahisa MOCHIZUKI  Kenichiro KOBAYASHI  Tsuneki YAMASAKI  

     
    BRIEF PAPER-Scattering and Diffraction

      Vol:
    E95-C No:1
      Page(s):
    101-104

    We introduce a novel method to optimize field decomposition for a mode matching technique. Using our method, expanded mode numbers can be minimized to achieve the desired digits of computational accuracy.

  • Effectiveness of Short-Range MIMO Using Dual-Polarized Antenna

    Ken HIRAGA  Tomohiro SEKI  Kentaro NISHIMORI  Kazuhiro UEHARA  

     
    PAPER-Radio Systems

      Vol:
    E95-B No:1
      Page(s):
    87-96

    Short-range Multiple-Input-Multiple-Output (SR-MIMO) transmission is an effective technique for achieving high-speed and short-range wireless communication. With this technique, however, the optimum aperture size of array antennas grows when the transmission distance is increased. Thus, antenna miniaturization is an important issue in SR-MIMO. In this paper, we clarify the effectiveness of using dual-polarized planar antennas as a means of miniaturizing SR-MIMO array antennas by measurements and analysis of MIMO transmission characteristics. We found that even in SR-MIMO transmission, the use of dual-polarized transmission enables higher channel capacity. Dual-polarized antennas can reduce by two thirds the array area that is needed to obtain the same channel capacity. For a transmission distance of two wavelengths, the use of a dual-polarized antenna improved the channel capacity by 26 bit/s/Hz while maintaining the same number of transmitters and receivers and the same antenna aperture size. Moreover, dual-polarized SR-MIMO has a further benefit when zero-forcing (ZF) reception without transmit beamforming is adopted, i.e., it effectively simplifies hardware configuration because it can reduce spatial correlation even in narrow element spacing. In this work, we confirmed that the application of dual-polarization to SR-MIMO is an effective way to both increase channel capacity and enhance transceiver simplification.

  • Time-Efficient Multiple-Stage Spectrum Sensing for Cognitive Radio Systems

    Jung Min PARK  Seong-Lyun KIM  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:1
      Page(s):
    341-344

    To opportunistically use the licensed band, spectrum sensing has a vital role as the core component in cognitive radio systems. However, the accurate detection of the primary signal is always accompanied by significant overhead, reducing the secondary throughput. In this letter, we suggest remedying this problem by adopting multiple-stage spectrum sensing (MSS) technique. Furthermore, we investigate how our proposed MSS can be incorporated into the collaborative spectrum sensing. Our results are encouraging in that the proposed MSS with collaboration significantly reduces the sensing time compared to the conventional sensing scheme.

  • Undeniable and Unpretendable Signatures

    Le Trieu PHONG  Kaoru KUROSAWA  Wakaha OGATA  

     
    PAPER-Authentication

      Vol:
    E95-A No:1
      Page(s):
    138-150

    Undeniable signature, and unpretendable signature schemes have been studied independently. In this paper, efficient schemes which serve as both at the same time are presented. The schemes find their typical application in anonymous auction where the winner cannot deny her bid; nobody can pretend to be the winner; and the anonymity of all losers is preserved. The security of the schemes is proved in the common reference string model under discrete logarithm type assumptions.

  • Blind Adaptive Method for Image Restoration Using Microscanning

    Jose L. LOPEZ-MARTINEZ  Vitaly KOBER  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E95-D No:1
      Page(s):
    280-284

    This paper presents a restoration method using several degraded observed images obtained through a technique known as microscanning. It is shown that microscanning provides sufficient spatial information for image restoration with minimal information about the original image and without knowing the interference function that causes degradation.

  • An Authentication Framework for Wireless Sensor Networks Using Identity-Based Signatures: Implementation and Evaluation

    Rehana YASMIN  Eike RITTER  Guilin WANG  

     
    PAPER-Security

      Vol:
    E95-D No:1
      Page(s):
    126-133

    In Wireless Sensor Networks (WSNs), authentication is a crucial security requirement to avoid attacks against secure communication, and to mitigate against DoS attacks exploiting the limited resources of sensor nodes. Resource constraints of sensor nodes are hurdles in applying strong public key cryptographic based mechanisms in WSNs. To address the problem of authentication in WSNs, we propose an efficient and secure framework for authenticated broadcast/multicast by sensor nodes as well as for outside user authentication, which utilizes identity based cryptography and online/offline signature (OOS) schemes. The primary goals of this framework are to enable all sensor nodes in the network, firstly, to broadcast and/or multicast an authenticated message quickly; secondly, to verify the broadcast/multicast message sender and the message contents; and finally, to verify the legitimacy of an outside user. This paper reports the implementation and experimental evaluation of the previously proposed authenticated broadcast/multicast by sensor nodes scheme using online/offline signature on TinyOS and MICA2 sensor nodes.

5421-5440hit(16314hit)