The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

5641-5660hit(16314hit)

  • Spurious Suppression and Design Based on Microstrip Open Loop Ring Resonator Bandpass Filters

    Pichai ARUNVIPAS  Chokchai SANGDAO  Ravee PHROMLOUNGSRI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E94-C No:9
      Page(s):
    1447-1454

    This paper presents novel structures of band-pass filters using two configurations of open loop ring resonators (OPLRR): a resonator with embedded quadruply-stepped impedance transmission lines (QSITL) in coupled lines, and a stepped impedance resonator (SIR). Both types of OPLRR have the capability of suppressing the second spurious response and shifting the third spurious response to a higher frequency as well. To demonstrate the performances of both proposed resonators, two sections of each structure with cascaded and crossed configurations at an operating frequency of 0.9 GHz are presented. Both methodologies are easy to design and implement. The methodology with a SIR has a better performance than the SITL. The measurement results of the proposed circuits are in full agreement with the simulated prediction results.

  • Analysis of a New High-Speed DC Switch Repulsion Mechanism

    Yi WU  Hailong HE  Zhengyong HU  Fei YANG  Mingzhe RONG  Yang LI  

     
    PAPER

      Vol:
    E94-C No:9
      Page(s):
    1409-1415

    This paper focuses on the research of a new high-speed DC switch repulsion mechanism with experimental and simulation methods. Multi-physical equations reflecting the transient electromagnetic field, electric circuit, mechanical motion and material deformation are coupled in the calculation. For the reason of accuracy, skin effect and the proximity effect caused by the current in the coil are also taken into account. According to the simulation results, which indicate several key parameters severely affecting the mechanism speed, a high-speed DC switch repulsion mechanism is developed. By the test of mechanism motion, its average speed can be up to 8.4 m/s and its mechanism response time is 250 µs, which verifies the simulation results. Furthermore, during high speed motion the stress on the metal plate and moving contact is also discussed. It is noticed that the influence of the material deformation on the mechanical motion is very important.

  • Optimal Power Scaling for Quasi-Orthogonal Space-Time Block Codes with Power Scaling and Square Lattice Constellations

    Hoojin LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:9
      Page(s):
    2660-2662

    Recently proposed full-rate quasi-orthogonal space-time block codes (QSTBCs) with power scaling is able to achieve full-diversity through linearly combining two adequately power scaled orthogonal space-time block codes (OSTBCs). While in our initial work we numerically derived the optimal value of the power scaling factor to achieve full-diversity, our goal in this letter is to analytically derive the optimal power scaling, especially for square lattice constellations (e.g., 4-QAM, 16-QAM, etc.) by maximizing the coding gain.

  • Reliable Decision-Aided Multiuser Detection for Cooperative CDMAs

    Hoang-Yang LU  Yen-Yu CHEN  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E94-A No:9
      Page(s):
    1892-1895

    In this paper, we propose a simple, yet effective, multiuser detection scheme for a two-hop cooperative CDMAs. In phase 1, the minimum mean square error (MMSE) detector at the destination is used to identify reliable decisions of direct transmissions from the sources and return them to the relays. Then, in phase 2, based on the reliable decisions, the relays and the destination successively utilize the maximum likelihood (ML) detectors to estimate the residual symbols. Due to the destination estimating the symbols separately from direct transmissions and the relaying signals, as a result the destination does not need the information about the relays' decision performance for the construction of the ML detector. Hence, the proposed scheme is more feasible than existing approaches for practical implementation. In addition, due to the ML detectors in phase 2 only estimating the residual symbols, the number of computations performed by the ML detectors can be reduced significantly. The results of simulations and complexity analysis demonstrate the efficiency and effectiveness of the proposed scheme.

  • CMOS Imaging Devices for Biomedical Applications Open Access

    Jun OHTA  Takuma KOBAYASHI  Toshihiko NODA  Kiyotaka SASAGAWA  Takashi TOKUDA  

     
    INVITED PAPER

      Vol:
    E94-B No:9
      Page(s):
    2454-2460

    We review recently obtained results for CMOS (Complementary Metal Oxide Semiconductor) imaging devices used in biomedical applications. The topics include dish type image sensors, deep-brain implantation devices for small animals, and retinal prosthesis devices. Fundamental device structures and their characteristics are described, and the results of in vivo experiments are presented.

  • A New Calibration Algorithm Using Reference Materials for the Waveguide-Penetration Method

    Alfred KIK  Atsuhiro NISHIKATA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E94-B No:9
      Page(s):
    2549-2557

    The waveguide-penetration method is a method to measure the electrical properties of materials. In this method, a cylindrical object pierces a rectangular waveguide through a pair of holes at the centre of its broad walls. Then, the complex permittivity and permeability of the object are estimated from measured S-parameters after TRL calibration. This paper proposes a new calibration algorithm for the waveguide-penetration method. Reference materials with known electrical properties are fabricated in cylindrical shapes to fit into the holes in the waveguide and are used as calibration standards. The algorithm is formulated using the property of equal traces in similar matrices, and we show that at least two reference materials are needed to calibrate the system. The proposed algorithm yields a simpler means of calibration compared to TRL and is verified using measurements in the S-band. Also, the error sensitivity coefficients are derived. These coefficients give valuable information for the selection of reference materials.

  • Software-Based Parallel Cryptographic Solution with Massive-Parallel Memory-Embedded SIMD Matrix Architecture for Data-Storage Systems

    Takeshi KUMAKI  Tetsushi KOIDE  Hans Jurgen MATTAUSCH  Masaharu TAGAMI  Masakatsu ISHIZAKI  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E94-D No:9
      Page(s):
    1742-1754

    This paper presents a software-based parallel cryptographic solution with a massive-parallel memory-embedded SIMD matrix (MTX) for data-storage systems. MTX can have up to 2,048 2-bit processing elements, which are connected by a flexible switching network, and supports 2-bit 2,048-way bit-serial and word-parallel operations with a single command. Furthermore, a next-generation SIMD matrix called MX-2 has been developed by expanding processing-element capability of MTX from 2-bit to 4-bit processing. These SIMD matrix architectures are verified to be a better alternative for processing repeated-arithmetic and logical-operations in multimedia applications with low power consumption. Moreover, we have proposed combining Content Addressable Memory (CAM) technology with the massive-parallel memory-embedded SIMD matrix architecture to enable fast pipelined table-lookup coding. Since both arithmetic logical operation and table-lookup coding execute extremely fast on these architectures, efficient execution of encryption and decryption algorithms can be realized. Evaluation results of the CAM-less and CAM-enhanced massive-parallel SIMD matrix processor for the example of the Advanced Encryption Standard (AES), which is a widely-used cryptographic algorithm, show that a throughput of up to 2.19 Gbps becomes possible. This means that several standard data-storage transfer specifications, such as SD, CF (Compact Flash), USB (Universal Serial Bus) and SATA (Serial Advanced Technology Attachment) can be covered. Consequently, the massive-parallel SIMD matrix architecture is very suitable for private information protection in several data-storage media. A further advantage of the software based solution is the flexible update possibility of the implemented-cryptographic algorithm to a safer future algorithm. The massive-parallel memory-embedded SIMD matrix architecture (MTX and MX-2) is therefore a promising solution for integrated realization of real-time cryptographic algorithms with low power dissipation and small Si-area consumption.

  • Statistical Characteristics of OFDM Systems over Frequency-Selective Rician Fading Channels and Its Application to BER Study

    Zhiwei MAO  Julian CHENG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:9
      Page(s):
    2565-2573

    Some statistical characteristics, including the means and the cross-correlations, of frequency-selective Rician fading channels seen by orthogonal frequency division multiplexing (OFDM) subcarriers are derived in this paper. Based on a pairwise error probability analysis, the mean vector and the cross-correlation matrix are used to obtain an upper bound of the overall bit-error rate (BER) in a closed-form for coded OFDM signals with and without inter-carrier interference. In this paper, the overall BER is defined as the average BER of OFDM signals of all subcarriers obtained by considering their cross-correlations. Numerical examples are presented to compare the proposed upper bound of the overall BERs and the overall BERs obtained by simulations.

  • A Simple Class of Binary Neural Networks and Logical Synthesis

    Yuta NAKAYAMA  Ryo ITO  Toshimichi SAITO  

     
    LETTER-Nonlinear Problems

      Vol:
    E94-A No:9
      Page(s):
    1856-1859

    This letter studies learning of the binary neural network and its relation to the logical synthesis. The network has the signum activation function and can approximate a desired Boolean function if parameters are selected suitably. In a parameter subspace the network is equivalent to the disjoint canonical form of the Boolean functions. Outside of the subspace, the network can have simpler structure than the canonical form where the simplicity is measured by the number of hidden neurons. In order to realize effective parameter setting, we present a learning algorithm based on the genetic algorithm. The algorithm uses the teacher signals as the initial kernel and tolerates a level of learning error. Performing basic numerical experiments, the algorithm efficiency is confirmed.

  • A Compact Design of a Low Frequency Quadrature DDFS with Low Distortion Using Analog Shapers

    Kanitpong PENGWON  Ekachai LEELARASMEE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:9
      Page(s):
    2574-2581

    An analysis and design of a CMOS differential pair and a common source amplifier for shaping a triangular signal into 0-π/4 segments of sine and cosine waveforms are presented. By multiplexing these two shaped outputs, low distortion full sine and cosine signals can be produced at one fourth the frequency of the triangular input. These two circuits can be combined with one DAC and a phase accumulator to form a compact quadrature direct digital frequency synthesizer (Q-DDFS) suitable for generating low distortion sinusoidal signals at low frequency. The shapers are biased by two current generators specially designed to compensate for process parameter variations. MOS dimensional mismatch is also studied. The analog part of the Q-DDFS is synthesized using 0.18-micron n-well CMOS technology. A simulation shows that the circuit consumes 1.3 mW and can generate 19.96 mV 50 kHz sine and cosine signals with spurious free dynamic range (SFDR) of around 50 dBc from a Q-DDFS running at 1.6 MHz.

  • Contact Conditions in Connectors that Cause Common Mode Radiation

    Yu-ichi HAYASHI  Yoshiki KAYANO  Takaaki MIZUKI  Hideaki SONE  Hiroshi INOUE  

     
    PAPER

      Vol:
    E94-C No:9
      Page(s):
    1369-1374

    When contact failure occurs in a connector in a coaxial high-frequency (HF) signal transmission line, it is well known that common-mode (CM) radiation occurs on the line. We focus on contact conditions in a connector causing such CM radiation. Experiments and simulations verify that CM radiation increases as the contact resistance increases. While the CM current strongly depends on the distribution pattern of contact resistances at a low resistance, the CM current does not depend on these pattern at a high resistance. Our results indicate that it is important to maintain a symmetrical distribution of contact spots whenever the number of such spots is four or more.

  • A Closed-Loop Macro Diversity Scheme in Cooperative Multi-Point Downlink Transmission Systems

    Yingquan ZOU  Chunguo LI  Luxi YANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:9
      Page(s):
    2667-2671

    In this paper, the joint optimization issue of the cooperative precoder design is investigated for the transmission from the cooperative multi-point system to one mobile terminal. Based on the mean squared error minimization criterion, the problem is established for the cooperative precoder design. Unfortunately, this problem cannot be solved due to the block diagonal structure of the whole precoding matrix resulting from the fact that there is no data exchange among multiple base stations. In order to tackle this difficulty, the original problem is converted into an equivalent problem by stacking all of the nonzero entries in the block diagonal matrix into a long column vector. With the equivalent problem, the optimum solution is obtained in a closed-form expression by using the Lagrangian multiplier method. Numerical simulations illustrate the effectiveness of the proposed scheme in terms of bit error rate and spectral efficiency.

  • A Cross Polarization Suppressed Sequential Array with L-Probe Fed Rectangular Microstrip Antennas

    Kazuki IKEDA  Keigo SATO  Ken-ichi KAGOSHIMA  Shigeki OBOTE  Atsushi TOMIKI  Tomoaki TODA  

     
    LETTER-Antennas and Propagation

      Vol:
    E94-B No:9
      Page(s):
    2653-2655

    In this paper, we present a sequentially rotated array antenna with a rectangular patch MSA fed by an L-probe. Since it's important to decrease couplings between patch elements in order to suppress the cross-polarization level, rectangular patches with aspect ratio of k are adopted. We investigate the cross-polarization level of the sequential array and discuss the relationship between the cross-polarization level and the mutual coupling. As a result, the bandwdith of the antenna element is obtained 14.6% when its VSWR is less than 1.5, and the directivity and cross-polarization level of a 4-patch sequential array are 10.8 dBic and 1.7 dBic, respectively, where k=0.6 and the patch spacing of d=0.5 wave length. These characteristics are 5.6 dB and 5.8 dB better than the corresponding values of a square patch sequential array antenna.

  • Decoupled Location Parameter Estimation of Near-Field Sources with Symmetric ULA

    Bum-Soo KWON  Tae-Jin JUNG  Kyun-Kyung LEE  

     
    LETTER-Antennas and Propagation

      Vol:
    E94-B No:9
      Page(s):
    2646-2649

    A novel algorithm is presented for near-field source localization with a symmetric uniform linear array (ULA) consisting of an even number of sensors. Based on element reordering of a symmetric ULA, the steering vector is factorised with respect to the range-independent bearing parameters and range-relevant 2-D location parameters, which allows the range-independent bearing estimation with rank-reduction idea. With the estimated bearing, the range estimation for each source is then obtained by defining the 1-D MUSIC spectrum. Simulation results are presented to validate the performance of the proposed algorithm.

  • Unequal Error Protection (UEP) Image Transmission System with Lifting Wavelet Transform (LWT) Based Reed Solomon (RS) Coded Cooperation Scheme

    A. H. M. ALMAWGANI  M. F. M. SALLEH  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:9
      Page(s):
    2592-2599

    This paper presents a new unequal error protection (UEP) image transmission system that incorporates a Lifting Wavelet Transform (LWT) and Reed Solomon (RS) coded cooperation scheme to increase image transmission diversity, as well as save transmission bandwidth. Having a partner to assist direct communication increases the resilience of low frequency subband data against an error-prone fading channel. Low frequency subbands are partitioned into two sets of data and transmitted using the RS coded cooperation scheme. High frequency subbands data are transmitted directly to a base station. Results show that the new UEP image transmission system using LWT based RS coded cooperation scheme achieves diversity gains of around 10 dB, with channel SNR from 10 to 20 dB, compared with the image transmission system with non-cooperative system under slow Rayleigh fading channel for all levels of LWT decomposition. In addition, the new UEP image transmission system using LWT based RS coded cooperation scheme with one level of wavelet decomposition offers around 37.5% bandwidth gain (β), compared with the system without LWT, which incurs a reduction of 3 dB in reconstructed image quality.

  • Optimal Power Control of Cognitive Radio under SINR Constraint with Primary User's Cooperation

    Ding XU  Zhiyong FENG  Yizhe LI  Ping ZHANG  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E94-B No:9
      Page(s):
    2685-2689

    In this letter, we study the power control of a cognitive radio (CR) network, where the secondary user (SU) is allowed to share the spectrum with the primary user (PU) only if the signal to interference plus noise ratio (SINR) at the PU is higher than a predetermined level. Both PU fixed power control and PU adaptive power control are considered. Specifically, for the PU adaptive power control, the PU will cooperate with the SU by transmitting with adaptive power. The optimal power control schemes for the SU to maximize the SU throughput under the PU SINR constraint are derived. It is shown that the SU throughput achieved by the optimal power control with the PU adaptive power control is a significant improvement over the optimal power control with the PU fixed power control, especially under high power constraint and low SINR constraint.

  • A Two-Stage Spectrum Sensing Scheme Based on Cyclostationarity in Cognitive Radio

    Ying-pei LIN  Chen HE  Ling-ge JIANG  Di HE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:9
      Page(s):
    2681-2684

    A spectrum sensing scheme for cognitive radio that includes coarse and fine sensing stages based on cyclostationarity is proposed in this paper. The cyclostationary feature detection (CFD) based on a single cyclic frequency (SCF) is used in the coarse sensing stage and that based on multiple cyclic frequencies (MCF) is employed in the fine sensing stage. Whether the fine sensing stage is performed or not is decided by comparing the statistic constructed in the coarse sensing stage with two thresholds. Theoretical analyses and simulation results show that the proposed sensing scheme has superior sensing performance and needs shorter sensing time.

  • Assessing the Impact of Node Churn to Random Walk-Based Overlay Construction

    Kyungbaek KIM  

     
    LETTER-Information Network

      Vol:
    E94-D No:9
      Page(s):
    1830-1833

    Distributed systems desire to construct a random overlay graph for robustness, efficient information dissemination and load balancing. A random walk-based overlay construction is a promising alternative to generate an ideal random scale free overlay in distributed systems. However, a simple random walk-based overlay construction can be affected by node churn. Especially, the number of edges increases and the degree distribution is skewed. This inappropriate distortion can be exploited by malicious nodes. In this paper, we propose a modified random walk-based overlay construction supported by a logistic/trial based decision function to compensate the impact of node churn. Through event-driven simulations, we show that the decision function helps an overlay maintain the proper degree distribution, low diameter and low clustering coefficient with shorter random walks.

  • An Empirical Evaluation of an Unpacking Method Implemented with Dynamic Binary Instrumentation

    Hyung Chan KIM  Tatsunori ORII  Katsunari YOSHIOKA  Daisuke INOUE  Jungsuk SONG  Masashi ETO  Junji SHIKATA  Tsutomu MATSUMOTO  Koji NAKAO  

     
    PAPER-Information Network

      Vol:
    E94-D No:9
      Page(s):
    1778-1791

    Many malicious programs we encounter these days are armed with their own custom encoding methods (i.e., they are packed) to deter static binary analysis. Thus, the initial step to deal with unknown (possibly malicious) binary samples obtained from malware collecting systems ordinarily involves the unpacking step. In this paper, we focus on empirical experimental evaluations on a generic unpacking method built on a dynamic binary instrumentation (DBI) framework to figure out the applicability of the DBI-based approach. First, we present yet another method of generic binary unpacking extending a conventional unpacking heuristic. Our architecture includes managing shadow states to measure code exposure according to a simple byte state model. Among available platforms, we built an unpacking implementation on PIN DBI framework. Second, we describe evaluation experiments, conducted on wild malware collections, to discuss workability as well as limitations of our tool. Without the prior knowledge of 6029 samples in the collections, we have identified at around 64% of those were analyzable with our DBI-based generic unpacking tool which is configured to operate in fully automatic batch processing. Purging corrupted and unworkable samples in native systems, it was 72%.

  • A Novel Framework for Spectrum Sensing in Cognitive Radio Networks

    Navid TAFAGHODI KHAJAVI  Siavash SADEGHI IVRIGH  Seyed Mohammad-Sajad SADOUGH  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:9
      Page(s):
    2600-2609

    Cognitive radio (CR) is a key solution for the problem of inefficient usage of spectral resources. Spectrum sensing in each CR aims at detecting whether a preassigned spectrum band is occupied by a primary user or not. Conventional techniques do not allow the CR to communicate with its own base station during the spectrum sensing process. So, only a part of the frame can be used for cognitive data transmission. In this paper, we introduce a new spectrum sensing framework that combines a blind source separation technique with conventional spectrum sensing techniques. In this way, the cognitive transmitter can continue to transmit during spectrum sensing, if it was in operation in the previous frame. Moreover, the accuracy is improved since the decision made by the spectrum unit in each frame depends on the decision made in the previous frame. We use Markov chain tools to model the behavior of our spectrum sensing proposal and to derive the parameters that characterize its performance. Numerical results are provided to confirm the superiority of the proposed technique compared to conventional spectrum sensing techniques.

5641-5660hit(16314hit)