The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

5961-5980hit(16314hit)

  • A DOA Estimation Approach under Nonuniform White Noise

    Jhih-Chung CHANG  Jui-Chung HUNG  Ann-Chen CHANG  

     
    LETTER-Antennas and Propagation

      Vol:
    E94-B No:3
      Page(s):
    831-833

    The letter deals with direction-of-arrival (DOA) estimation under nonuniform white noise and moderately small signal-to-noise ratios. The proposed approach first uses signal subspace projection for received data vectors, which form an efficient iterative quadratic maximum-likelihood (IQML) approach to achieve fast convergence and high resolution capabilities. In conjunction with a signal subspace selection technique, a more exact signal subspace can be obtained for reducing the nonuniform noise effect. The performance improvement achieved by applying the proposal to the classic IQML method is confirmed by computer simulations.

  • A Transport-Layer Solution for Alleviating TCP Unfairness in a Wireless LAN Environment

    Masafumi HASHIMOTO  Go HASEGAWA  Masayuki MURATA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E94-B No:3
      Page(s):
    765-776

    Per-flow unfairness of TCP throughput in the IEEE 802.11 wireless LAN (WLAN) environment has been reported in past literature. A number of researchers have proposed various methods for alleviating the unfairness; most require modification of MAC protocols or queue management mechanisms in access points. However, the MAC protocols of access points are generally implemented at hardware level, so changing these protocols is costly. As the first contribution of this paper, we propose a transport-layer solution for alleviating unfairness among TCP flows, requiring a small modification to TCP congestion control mechanisms only on WLAN stations. In the past literature on fairness issues in the Internet flows, the performance of the proposed solutions for alleviating the unfairness has been evaluated separately from the network bandwidth utilization, meaning that they did not consider the trade-off relationships between fairness and bandwidth utilization. Therefore, as the second contribution of this paper, we introduce a novel performance metric for evaluating trade-off relationships between per-flow fairness and bandwidth utilization at the network bottleneck. We confirm the fundamental characteristics of the proposed method through simulation experiments and evaluate the performance of the proposed method through experiments in real WLAN environments. We show that the proposed method can achieve better a trade-off between fairness and bandwidth utilization, regardless of vendor implementations of wireless access points and wireless interface cards.

  • Error Analysis at Numerical Inversion of Multidimensional Laplace Transforms Based on Complex Fourier Series Approximation

    Lubomír BRANÍK  

     
    LETTER-Digital Signal Processing

      Vol:
    E94-A No:3
      Page(s):
    999-1001

    In the paper, a technique of the numerical inversion of multidimensional Laplace transforms (nD NILT), based on a complex Fourier series approximation is elaborated in light of a possible ralative error achievable. The detailed error analysis shows a relationship between the numerical integration of a multifold Bromwich integral and a complex Fourier series approximation, and leads to a novel formula relating the limiting relative error to the nD NILT technique parameters.

  • An Improved Linear Difference Method with High ROM Compression Ratio in Direct Digital Frequency Synthesizer

    Van-Phuc HOANG  Cong-Kha PHAM  

     
    LETTER-Digital Signal Processing

      Vol:
    E94-A No:3
      Page(s):
    995-998

    The increasing demand of low power Direct Digital Frequency Synthesizer (DDFS) leads to the requirement of efficient compression methods to reduce ROM size for storing sine function values. This paper presents a technique to achieve very high compression ratio by using the optimized four-segment linear difference method. The proposed technique results in the ROM compression ratio of about 117.3:1 and the word size reduction of 6 bits for the design of a DDFS with 11-bit sine amplitude output. This high compression ratio result is very promising to meet the requirement of low power consumption and low hardware complexity in digital VLSI technology.

  • Hole-Filling by Rank Sparsity Tensor Decomposition for Medical Imaging

    Lv GUO  Yin LI  Jie YANG  Li LU  

     
    LETTER-Biological Engineering

      Vol:
    E94-D No:2
      Page(s):
    396-399

    Surface integrity of 3D medical data is crucial for surgery simulation or virtual diagnoses. However, undesirable holes often exist due to external damage on bodies or accessibility limitation on scanners. To bridge the gap, hole-filling for medical imaging is a popular research topic in recent years [1]-[3]. Considering that a medical image, e.g. CT or MRI, has the natural form of a tensor, we recognize the problem of medical hole-filling as the extension of Principal Component Pursuit (PCP) problem from matrix case to tensor case. Since the new problem in the tensor case is much more difficult than the matrix case, an efficient algorithm for the extension is presented by relaxation technique. The most significant feature of our algorithm is that unlike traditional methods which follow a strictly local approach, our method fixes the hole by the global structure in the specific medical data. Another important difference from the previous algorithm [4] is that our algorithm is able to automatically separate the completed data from the hole in an implicit manner. Our experiments demonstrate that the proposed method can lead to satisfactory results.

  • Model-Based Reinforcement Learning in Multiagent Systems with Sequential Action Selection

    Ali AKRAMIZADEH  Ahmad AFSHAR  Mohammad Bagher MENHAJ  Samira JAFARI  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E94-D No:2
      Page(s):
    255-263

    Model-based reinforcement learning uses the gathered information, during each experience, more efficiently than model-free reinforcement learning. This is especially interesting in multiagent systems, since a large number of experiences are necessary to achieve a good performance. In this paper, model-based reinforcement learning is developed for a group of self-interested agents with sequential action selection based on traditional prioritized sweeping. Every single situation of decision making in this learning process, called extensive Markov game, is modeled as n-person general-sum extensive form game with perfect information. A modified version of backward induction is proposed for action selection, which adjusts the tradeoff between selecting subgame perfect equilibrium points, as the optimal joint actions, and learning new joint actions. The algorithm is proved to be convergent and discussed based on the new results on the convergence of the traditional prioritized sweeping.

  • Moving Object Detection Based on Clausius Entropy

    Jonghyun PARK  Wanhyun CHO  Gueesang LEE  Soonyoung PARK  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E94-D No:2
      Page(s):
    388-391

    This paper proposes a novel image segmentation method based on Clausius entropy and adaptive Gaussian mixture model for detecting moving objects in a complex environment. The results suggest that the proposed method performs better than existing methods in extracting the foreground in various video sequences composed of multiple objects, lighting reflections, and background clutter.

  • Post-Routing Double-Via Insertion for X-Architecture Clock Tree Yield Improvement

    Chia-Chun TSAI  Chung-Chieh KUO  Trong-Yen LEE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E94-A No:2
      Page(s):
    706-716

    As the VLSI manufacturing technology shrinks to 65 nm and below, reducing the yield loss induced by via failures is a critical issue in design for manufacturability (DFM). Semiconductor foundries highly recommend using the double-via insertion (DVI) method to improve yield and reliability of designs. This work applies the DVI method in the post-stage of an X-architecture clock routing for double-via insertion rate improvement. The proposed DVI-X algorithm constructs the bipartite graphs of the partitioned clock routing layout with single vias and redundant-via candidates (RVCs). Then, DVI-X applies the augmenting path approach associated with the construction of the maximal cliques to obtain the matching solution from the bipartite graphs. Experimental results on benchmarks show that DVI-X can achieve higher double-via insertion rate by 3% and less running time by 68% than existing works. Moreover, a skew tuning technique is further applied to achieve zero skew because the inserted double vias affect the clock skew.

  • Error Probability Analysis of Majority Decision in Tree Network Composed of BSC

    Kazutaka NISHINO  Shinji TANI  Ikuo OKA  Shingo ATA  

     
    LETTER-Network

      Vol:
    E94-B No:2
      Page(s):
    562-564

    A path diversity is an effective technique to get highly reliable communications in the sensor network. In this paper, the path diversity is examined for a tree network composed of binary symmetric channels (BSC) from the view point of bit error probability (BEP). End-nodes of the network are connected to a fusion center, which sums up the received data. The probability density function (pdf) of decision variable conditioned on a source node data is derived by an iterative algorithm to obtain BEP. Numerical results show that in the case of a majority decision, BEP at the fusion center is almost the same as the BSC crossover probability due to the path diversity effects, even if the number of relay links increases.

  • Sanitizable Signatures Reconsidered

    Dae Hyun YUM  Pil Joong LEE  

     
    PAPER-Cryptography and Information Security

      Vol:
    E94-A No:2
      Page(s):
    717-724

    A sanitizable signature scheme allows a semi-trusted party, designated by a signer, to modify pre-determined parts of a signed message without interacting with the original signer. To date, many sanitizable signature schemes have been proposed based on various cryptographic techniques. However, previous works are usually built upon the paradigm of dividing a message into submessages and applying a cryptographic primitive to each submessage. This methodology entails the computation time (and often signature length) in linear proportion to the number of sanitizable submessages. We present a new approach to constructing sanitizable signatures with constant overhead for signing and verification, irrespective of the number of submessages, both in computational cost and in signature size.

  • Multilayer Polyfluorene-Based Light-Emitting Diodes for Frequency Response Up to 100 MHz

    Hirotake KAJII  Toshinari KOJIMA  Yutaka OHMORI  

     
    BRIEF PAPER

      Vol:
    E94-C No:2
      Page(s):
    190-192

    High luminance and high speed response with the cut-off frequency of more than 50 MHz in multilayer polyfluorene-based light-emitting diodes with an interlayer were achieved. We realized multilayer polyfluorene-based light-emitting diodes for frequency response up to 100 MHz.

  • The Precoder Design for Intrablock MMSE Equalization and Block Delay Detection with a Modified Oblique Projection Framework

    Chun-Hsien WU  

     
    LETTER-Digital Signal Processing

      Vol:
    E94-A No:2
      Page(s):
    829-832

    This letter presents a method to enable the precoder design for intrablock MMSE equalization with previously proposed oblique projection framework. The joint design of the linear transceiver with optimum block delay detection is built. Simulation results validate the proposed approach and show the superior BER performance of the optimized transceiver.

  • Improvement of Detection Performance in DWT-Based Image Watermarking under Specified False Positive Probability

    Masayoshi NAKAMOTO  Kohei SAYAMA  Mitsuji MUNEYASU  Tomotaka HARANO  Shuichi OHNO  

     
    PAPER-Digital Signal Processing

      Vol:
    E94-A No:2
      Page(s):
    661-670

    For copyright protection, a watermark signal is embedded in host images with a secret key, and a correlation is applied to judge the presence of watermark signal in the watermark detection. This paper treats a discrete wavelet transform (DWT)-based image watermarking method under specified false positive probability. We propose a new watermarking method to improve the detection performance by using not only positive correlation but also negative correlation. Also we present a statistical analysis for the detection performance with taking into account the false positive probability and prove the effectiveness of the proposed method. By using some experimental results, we verify the statistical analysis and show this method serves to improve the robustness against some attacks.

  • A Design Procedure for CMOS Three-Stage NMC Amplifiers

    Mohammad YAVARI  

     
    PAPER

      Vol:
    E94-A No:2
      Page(s):
    639-645

    This paper presents a novel time-domain design procedure for fast-settling three-stage nested-Miller compensated (NMC) amplifiers. In the proposed design methodology, the amplifier is designed to settle within a definite time period with a given settling accuracy by optimizing both the power consumption and silicon die area. Detailed design equations are presented and the circuit level simulation results are provided to verify the usefulness of the proposed design procedure with respect to the previously reported design schemes.

  • M-Ary Soft Information Relaying of Distributed Turbo Codes

    Sung Kwon HONG  Jong-Moon CHUNG  Daehwan KIM  

     
    LETTER-Coding Theory

      Vol:
    E94-A No:2
      Page(s):
    869-871

    In this letter, an M-ary extension to the soft information relaying (SIR) scheme is derived for distributed turbo codes (DTCs) to enable higher data rate wireless communications with extended ranges. The M-ary based SIR design for DTCs is based on constructing a revised mapping constellation of the signals for calculating metrics from the soft mapping symbols. The numerical results show that DTCs using the proposed M-ary SIR with gray mapped quadrature phase shift keying (QPSK) provides a significant 5 dB performance gain over hard information relaying (HIR) DTCs at the 10-3 bit error rate (BER) level.

  • Energy-Saving Stochastic Scheduling of a Real-Time Parallel Task with Varying Computation Amount on Multi-Core Processors

    Wan Yeon LEE  Kyong Hoon KIM  

     
    LETTER-Systems and Control

      Vol:
    E94-A No:2
      Page(s):
    842-845

    The proposed scheduling scheme minimizes the mean energy consumption of a real-time parallel task, where the task has the probabilistic computation amount and can be executed concurrently on multiple cores. The scheme determines a pertinent number of cores allocated to the task execution and the instant frequency supplied to the allocated cores. Evaluation shows that the scheme saves manifest amount of the energy consumed by the previous method minimizing the mean energy consumption on a single core.

  • Vapor Deposition Polymerization and Electrical Characterization of TPD Thin Films

    Masakazu MUROYAMA  Ayako TAJIRI  Kyoko ICHIDA  Seiji YOKOKURA  Kuniaki TANAKA  Eiji OTSUKI  Hiroaki USUI  

     
    PAPER

      Vol:
    E94-C No:2
      Page(s):
    157-163

    Thin films of a divinyl derivative of tetraphenyldiaminobiphenyl DvTPD were prepared by vapor deposition followed by annealing. After annealing at 200°C for 1 h, the film became practically insoluble to organic solvents due to polymerization. Electrical characteristics of the films were measured by current-voltage measurement, time-of-flight measurement, and dielectric measurement. It was found that the hole mobility of DvTPD decreases when the film is polymerized. As a consequence of the decrease of hole mobility, carrier balance in the emissive layer of an organic light emitting diode (OLED) was improved, leading to a higher quantum efficiency and a pure emission spectrum. The dielectric measurement also confirmed the high thermal stability of the polymerized film.

  • The Effects of Spatial Correlation on Multiple Antenna Techniques with Multiuser Scheduling

    Haelyong KIM  Wan CHOI  Hyuncheol PARK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:2
      Page(s):
    591-594

    This letter investigates the effects of spatial correlation on several multiple antenna schemes in multiuser environments. Using an order statistics upper bound on achievable capacity, we quantify the interaction among spatial correlation, spatial diversity, spatial multiplexing and multiuser diversity. Also, it is verified that the upper bound is tighter than asymptotic capacity when the number of users is relatively small.

  • Impact of Channel Estimation Errors in Cooperative Transmission over Nakagami-m Fading Channels

    Lei WANG  Yueming CAI  Weiwei YANG  

     
    PAPER-Information Network

      Vol:
    E94-D No:2
      Page(s):
    298-307

    In this paper, we analyze the impact of channel estimation errors for both decode-and-forward (DF) and amplify-and-forward (AF) cooperative communication systems over Nakagami-m fading channels. Firstly, we derive the exact one-integral and the approximate expressions of the symbol error rate (SER) for DF and AF relay systems with different modulations. We also present expressions showing the limitations of SER under channel estimation errors. Secondly, in order to quantify the impact of channel estimation errors, the average signal-to-noise-ratio (SNR) gap ratio is investigated for the two types of cooperative communication systems. Numerical results confirm that our theoretical analysis for SER is very efficient and accurate. Comparison of the average SNR gap ratio shows that DF model is less susceptible to channel estimation errors than AF model.

  • Decoding Color Responses in Human Visual Cortex

    Ichiro KURIKI  Shingo NAKAMURA  Pei SUN  Kenichi UENO  Kazumichi MATSUMIYA  Keiji TANAKA  Satoshi SHIOIRI  Kang CHENG  

     
    INVITED PAPER

      Vol:
    E94-A No:2
      Page(s):
    473-479

    Color percept is a subjective experience and, in general, it is impossible for other people to tell someone's color percept. The present study demonstrated that the simple image-classification analysis of brain activity obtained by a functional magnetic resonance imaging (fMRI) technique enables to tell which of four colors the subject is looking at. Our results also imply that color information is coded by the responses of hue-selective neurons in human brain, not by the combinations of red-green and blue-yellow hue components.

5961-5980hit(16314hit)