The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

5701-5720hit(16314hit)

  • Adaptive Noise Suppression Algorithm for Speech Signal Based on Stochastic System Theory

    Akira IKUTA  Hisako ORIMOTO  

     
    PAPER

      Vol:
    E94-A No:8
      Page(s):
    1618-1627

    Numerous noise suppression methods for speech signals have been developed up to now. In this paper, a new method to suppress noise in speech signals is proposed, which requires a single microphone only and doesn't need any priori-information on both noise spectrum and pitch. It works in the presence of noise with high amplitude and unknown direction of arrival. More specifically, an adaptive noise suppression algorithm applicable to real-life speech recognition is proposed without assuming the Gaussian white noise, which performs effectively even though the noise statistics and the fluctuation form of speech signal are unknown. The effectiveness of the proposed method is confirmed by applying it to real speech signals contaminated by noises.

  • Near-Optimal Signal Detection Based on the MMSE Detection Using Multi-Dimensional Search for Correlated MIMO Channels Open Access

    Liming ZHENG  Kazuhiko FUKAWA  Hiroshi SUZUKI  Satoshi SUYAMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:8
      Page(s):
    2346-2356

    This paper proposes a low-complexity signal detection algorithm for spatially correlated multiple-input multiple-output (MIMO) channels. The proposed algorithm sets a minimum mean-square error (MMSE) detection result to the starting point, and searches for signal candidates in multi-dimensions of the noise enhancement from which the MMSE detection suffers. The multi-dimensional search is needed because the number of dominant directions of the noise enhancement is likely to be more than one over the correlated MIMO channels. To reduce the computational complexity of the multi-dimensional search, the proposed algorithm limits the number of signal candidates to O(NT) where NT is the number of transmit antennas and O( ) is big O notation. Specifically, the signal candidates, which are unquantized, are obtained as the solution of a minimization problem under a constraint that a stream of the candidates should be equal to a constellation point. Finally, the detected signal is selected from hard decisions of both the MMSE detection result and unquantized signal candidates on the basis of the log likelihood function. For reducing the complexity of this process, the proposed algorithm decreases the number of calculations of the log likelihood functions for the quantized signal candidates. Computer simulations under a correlated MIMO channel condition demonstrate that the proposed scheme provides an excellent trade-off between BER performance and complexity, and that it is superior to conventional one-dimensional search algorithms in BER performance while requiring less complexity than the conventional algorithms.

  • Distributed Mobility Control in Proxy Mobile IPv6 Networks

    Heeyoung JUNG  Moneeb GOHAR  Ji-In KIM  Seok-Joo KOH  

     
    PAPER

      Vol:
    E94-B No:8
      Page(s):
    2216-2224

    In future mobile networks, the ever-increasing loads imposed by mobile Internet traffic will force the network architecture to be changed from hierarchical to flat structure. Most of the existing mobility protocols are based on a centralized mobility anchor, which will process all control and data traffic. In the flat network architecture, however, the centralized mobility scheme has some limitations, such as unwanted traffic flowing into the core network, service degradation by a single point of failure, and increased operational costs, etc. This paper proposes mobility schemes for distributed mobility control in the flat network architecture. Based on the Proxy Mobile IPv6 (PMIP), which is a well-known mobility protocol, we propose the three mobility schemes: Signal-driven PMIP (S-PMIP), Data-driven Distributed PMIP (DD-PMIP), and Signal-driven Distributed PMIP (SD-PMIP). By numerical analysis, we show that the proposed distributed mobility schemes can give better performance than the existing centralized scheme in terms of the binding update and packet delivery costs, and that SD-PMIP provides the best performance among the proposed distributed schemes.

  • Resource Allocation Based on TCP Performance in Base Station Diversity Systems

    Katsuhiro NAITO  Kazuo MORI  Hideo KOBAYASHI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E94-B No:8
      Page(s):
    2357-2365

    This paper proposes a resource allocation method based on TCP (Transmission Control Protocol) throughput for base station diversity systems. A goal of this study is to achieve high throughput wireless Internet access by utilizing multiple wireless links effectively. The conventional work showed that base station diversity techniques can improve TCP performance. However, the improvement depends on the wireless environment of the wireless terminal. The proposed resource allocation method allocates wireless links to a wireless terminal based on its estimated TCP throughput and current traffic of each base station. Our method can take account of some network protocols such as TCP and UDP (User Datagram Protocol) by measuring the current traffic of each base station. In addition, wireless links are preferentially assigned to the wireless terminal that has the largest performance improvement per wireless link. Therefore, the proposal provides better overall system performance than the previous technique.

  • A Multi-Stage Second Order Dynamic Element Matching with In-Band Mismatch Noise Reduction Enhancement

    Yu TAMURA  Toru IDO  Kenji TANIGUCHI  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E94-C No:8
      Page(s):
    1340-1343

    This paper presents a technique to enhance in-band mismatch noise reduction of multi-stage second order Dynamic Element Matching (DEM) in multi-level ΔΣ Digital-to-Analog Converters (DACs). The presented technique changes an operational behavior of multi-stage DEM to reduce mismatch noise at in-band frequency. This change improves mismatch noise shaping performance for small amplitude input signals. Simulation result using 2-stage second order DEM and a third order 17-level ΔΣ modulator with 0.5% analog element mismatch shows 3.4 dB dynamic range improvement.

  • An Automatic Method of Mapping I/O Sequences of Chip Execution onto High-level Design for Post-Silicon Debugging

    Yeonbok LEE  Takeshi MATSUMOTO  Masahiro FUJITA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E94-A No:7
      Page(s):
    1519-1529

    Post-silicon debugging is getting even more critical to shorten the time-to-market than ever, as many more bugs escape pre-silicon verification according to the increasing design scale and complexity. Post-silicon debugging is generally harder than pre-silicon debugging due to the limited observability and controllability of internal signal values. Conventionally, simulation of corresponding low-level designs such as RTL or gate-level has been used to get observability and controllability, which is inefficient for contemporary large designs. In this paper, we introduce a post-silicon debugging approach using simulation of high-level designs, instead of low-level designs. To realize such a debugging approach, we propose an I/O sequence mapping method that converts I/O sequences of chip executions to those of the corresponding high-level design. First, we provide a formal definition of I/O sequence mapping and relevant notions. Then, based on the definition, we propose an I/O sequence mapping method by executing FSMs representing the interface specifications of the target design. Also, we propose an implementation of the proposed method to get further efficiency. We demonstrate that the proposed method can be effectively applied to several practical design examples with various interfaces.

  • Silicon Mach-Zehnder Waveguide Interferometer on Silicon-on-Silicon (SOS) Substrate Incorporating the Integrated Three-Terminal Field-Effect Device as an Optical Signal Modulation Structure

    Ricky W. CHUANG  Mao-Teng HSU  Shen-Horng CHOU  Yao-Jen LEE  

     
    PAPER

      Vol:
    E94-C No:7
      Page(s):
    1173-1178

    Silicon Mach-Zehnder interferometric (MZI) waveguide modulator incorporating the n-channel junction field-effect transistor (JFET) as a signal modulation unit was designed, fabricated, and analyzed. The proposed MZI with JFET was designed to operate based on the plasma dispersion effect in the infrared wavelength of 1550 nm. The three different modulation lengths (ML) of 500, 1000, and 2000 µm while keeping the overall MZI length constant at 1.5 cm were set as a general design rule for these 10 µm-wide MZIs under study. When the JFET was operated in an active mode by injecting approximately 50 mA current (Is) to achieve a π phase shift, the modulation efficiency of the device was measured to be η = π /(Is· L) 40π/A-mm. The temporal and frequency response measurements also demonstrate that the respectively rise and fall times measured using a high-speed photoreceiver were in the neighborhood of 8.5 and 7.5 µsec and the 3 dB roll-off frequency (f3 dB) measured was in the excess of 400 kHz.

  • Novel Miniaturized Harmonic Suppression Branch-Line Coupler Using Artificial Transmission Lines for UHF Applications

    Chia-Hao KU  Hsien-Wen LIU  Yu-Shu LIN  Kuei-Yi LIN  Pao-Jen WANG  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E94-C No:7
      Page(s):
    1237-1239

    A planar miniaturized branch-line coupler with harmonic suppression property for UHF band applications is presented in this paper. By properly synthesizing the LC-tanks that employ artificial transmission lines, two pairs of quarter-wavelength branch-lines to respectively meet characteristic impedances of 35.4 and 50 ohms can be obtained with the coupler. For the operating band, it can achieve good 3 dB power division with a 90° phase difference in the outputs of the through and coupled arms. The coupler also has a small area of 20.5(L)18(W) mm2, corresponding to 0.11 λg0.1 λg at 922 MHz. Compared with conventional couplers, the proposed design not only offers a wide bandwidth of more than 230 MHz within 1° or 1 dB, but also works with additional harmonic suppression for achieving better performance. Therefore, the proposed branch-line coupler with a compact size is well suitable for power division application.

  • All-Optical NRZ-to-RZ Data Format Conversion with Picosecond Duration-Tunable and Pedestal Suppressed Operations

    Quang NGUYEN-THE  Motoharu MATSUURA  Hung NGUYEN TAN  Naoto KISHI  

     
    PAPER

      Vol:
    E94-C No:7
      Page(s):
    1160-1166

    We demonstrate an all-optical picosecond pulse duration-tunable nonreturn-to-zero (NRZ)-to-return-to-zero (RZ) data format conversion using a Raman amplifier-based compressor and a fiber-based four-wave mixing (FWM) switch. A NRZ data signal is injected into the fiber-based FWM switch (AND gate) with a compressed RZ clock by the Raman amplifier-based compressor, and convert to RZ data signal by the fiber-based FWM switch. The compressed RZ clock train acts as a pump signal in the fiber-based FWM switch to perform the NRZ-to-RZ data format conversion. By changing the Raman pump power of the Raman amplifier-based compressor, it is possible to tune the pulse duration of the converted RZ data signal from 15 ps to 2 ps. In all the tuning range, the receiver sensitivity at bit error rate (BER) of 10-9 for the converted RZ data signal was about 1.31.7 dB better than the receiver sensitivity of the input NRZ data signal. Moreover, the pulse pedestal of the converted RZ data signals is well suppressed owing to the FWM process in the fiber-based FWM switch.

  • Novel Channel Estimation Method Based on Training Sequence Cyclic Reconstruction for TDS-OFDM System

    Zhenyu LIU  Fang YANG  Jian SONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:7
      Page(s):
    2158-2160

    In this paper, a novel channel estimation method for time domain synchrotrons orthogonal frequency domain multiplexing (TDS-OFDM) based on training sequence cyclic reconstruction is proposed to eliminate residual inter-block interference (IBI); it estimates the channel impulse response (CIR) in an iterative manner. A simulation and analysis show that the proposed method can effectively perform the channel estimation over long-delay multipath channels with low complexity.

  • Data Gathering by Mobile Sinks with Data-Centric Probe in Sensor Networks

    Dongook SEONG  Junho PARK  Jihee LEE  Myungho YEO  Jaesoo YOO  

     
    LETTER-Network

      Vol:
    E94-B No:7
      Page(s):
    2133-2136

    Many methods have been researched to prolong the lifetime of sensor networks that use mobile technologies. In the mobile sink research, there are the track based methods and the anchor points based methods as representative operation methods for mobile sinks. However, most existing methods decrease the Quality of Service (QoS) and lead to routing hotspots in the vicinity of the mobile sinks. The main reason is that they use static mobile sink movement paths that ignore the network environment such as the query position and the data priority. In this paper, we propose a novel mobile sink operation method that solves the problems of the existing methods. In our method, the probe priority of the mobile sink is determined from data priority to increase the QoS. The mobility of sink used to reduce the routing hotspot. Experiments show that the proposed method reduces the query response time and improves the network lifetime much more than the existing methods.

  • Localization with Ratio-Distance (LRD) for Distributed and Accurate Localization in Wireless Sensor Networks

    Kouakou Jean Marc ATTOUNGBLE  Kazunori OKADA  

     
    PAPER-Network

      Vol:
    E94-B No:7
      Page(s):
    1944-1951

    These days, cheap and intelligent sensors, networked through wireless links and deployed in large numbers, provide unprecedented opportunities for monitoring and controlling homes, cities and the environment. Networked sensors also offer a broad range of applications. Localization capability is essential in most wireless sensor networks applications; for instance in environmental monitoring applications such as animal habitat monitoring, bush fire surveillance, water quality monitoring and precision agriculture, the measurement data are meaningless without accurate knowledge of where they are obtained. Localization techniques are used to determine location information by estimating the location of each sensor node. Distance measurement errors are commonly known to affect the accuracy of the estimated location; resulting in errors that may be due to inherent or environmental factors. Trilateration [1] is a well-known method for localizing nodes by using the distances to three anchor nodes; yet it performs poorly when they are many distance measurement errors. Therefore, we propose the LRD (Localization with Ratio-Distance) algorithm, which performs strongly even in the presence of many measurement errors associated with the estimated distance to anchor nodes. Simulations using the OPNET Modeler show that LRD is more accurate than trilateration.

  • Lightweight One-Time Signature for Short Messages

    Dae Hyun YUM  Pil Joong LEE  

     
    PAPER-Cryptography and Information Security

      Vol:
    E94-A No:7
      Page(s):
    1567-1575

    One-time signature schemes have been used as an important cryptographic tool for various applications. To generate a signature on a message, the state-of-the-art one-time signature requires roughly one hash function evaluation and one modular multiplication. We propose a new one-time signature scheme for short messages that needs only one integer multiplication (i.e., without modular reduction or hash function evaluation). Theoretically, our construction is based on a generic transformation from identification protocols secure against active attacks into secure one-time signature schemes for short messages, where the Fiat-Shamir technique is not used. To obtain efficient instantiation of the transformation, we prove that the GPS identification protocol is secure against active attacks, which may be of independent interest.

  • A Virtual Layered Space-Frequency Receiver Architecture with Iterative Decoding

    Jun IMAMURA  Satoshi DENNO  Daisuke UMEHARA  Masahiro MORIKURA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:7
      Page(s):
    1994-2002

    In this paper, a novel receiver architecture is proposed for multiple-input-multiple-output (MIMO) systems; the proposed architecture helps achieve superior performance in multipath fading channels when the number of layered streams exceeds the number of receiving antennas. In this architecture, the concept of “virtual channel” is adopted to attain diversity gain even when successive detection is applied for reducing computational complexity, while orthogonal frequency division multiplexing (OFDM) is employed to combat multipath fading. Actually, successive detection is carried out in all possible virtual channels, and the virtual channel with the minimum error probability is detected with the assistance of the maximum a-posteriori (MAP) decoder in the architecture. In addition, soft input and soft output (SISO) iterative detection is introduced in the virtual channel estimation scheme. The performance of the proposed architecture is verified by computer simulations. This architecture can be implemented with lesser complexity than that in maximum likelihood detection (MLD), but the gain in the former case exceeds that in the latter by 4.5 dB at the BER of 10-3 for 42 MIMO-OFDM.

  • Reconfigurable Homogenous Multi-Core FFT Processor Architectures for Hybrid SISO/MIMO OFDM Wireless Communications

    Chin-Long WEY  Shin-Yo LIN  Pei-Yun TSAI  Ming-Der SHIEH  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E94-A No:7
      Page(s):
    1530-1539

    Multi-core processors have been attracting a great deal of attention. In the domain of signal processing for communications, the current trends toward rapidly evolving standards and formats, and toward algorithms adaptive to dynamic factors in the environment, require programmable solutions that possess both algorithm flexibility and low implementation complexity. Reconfigurable architectures have demonstrated better tradeoffs between algorithm flexibility, implementation complexity, and energy efficiency. This paper presents a reconfigurable homogeneous memory-based FFT processor (MBFFT) architecture integrated in a single chip to provide hybrid SISO/MIMO OFDM wireless communication systems. For example, a reconfigurable MBFFT processor with eight processing elements (PEs) can be configured for one DVB-T/H with N=8192 and two 802.11n with N=128. The reconfigurable processors can perfectly fit the applications of Software Defined Radio (SDR) which requires more hardware flexibility.

  • Performance Evaluation of a Windowed-Sinc Function-Based Peak Windowing Scheme for OFDM Polar Transmitters

    Manjung SEO  Seokhun JEON  Sungbin IM  

     
    PAPER-Digital Signal Processing

      Vol:
    E94-A No:7
      Page(s):
    1505-1512

    This paper proposes a windowed-sinc function based peak-to-average power ratio (PAPR) reduction scheme for applying the polar transmitter techniques to orthogonal frequency division multiplexing (OFDM), where the high PAPR problem occurs. The proposed algorithm mitigates the effect of excessive suppression due to successive peaks or relatively high peaks of a signal, which is often observed when applying the conventional peak windowing scheme. The bit error rate (BER) and error vector magnitude (EVM) performances are measured for various window types and lengths. The simulation results demonstrate that the proposed algorithm achieves significant improvement in terms of BER and PAPR reduction performance while maintaining similar spectrum performance compared to the conventional peak windowing scheme.

  • Sinusoidal Parameter Estimation Using Roots of an Algebraic Equation

    Takahiro MURAKAMI  Yoshihisa ISHIDA  

     
    PAPER-Digital Signal Processing

      Vol:
    E94-A No:7
      Page(s):
    1487-1496

    An algorithm for estimating sinusoidal parameters is presented. In this paper, it is assumed that an observed signal is a single sinusoidal signal contaminated by white Gaussian noise. Based on this assumption, the sinusoidal parameters can be found by minimizing a cost function using the mean squared error (MSE) between the observed signal and a sinusoidal signal with arbitrary sinusoidal parameters. Because the cost function is nonlinear and not convex, it has undesirable local minima. To solve the minimization problem, we propose to use the roots of an algebraic equation. The algebraic equation is derived straightforwardly from the cost function. We show that the global solution is formulated by using the roots of the algebraic equation.

  • Background Self-Calibration Algorithm for Pipelined ADC Using Split ADC Scheme

    Takuya YAGI  Kunihiko USUI  Tatsuji MATSUURA  Satoshi UEMORI  Satoshi ITO  Yohei TAN  Haruo KOBAYASHI  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E94-C No:7
      Page(s):
    1233-1236

    This brief paper describes a background calibration algorithm for a pipelined ADC with an open-loop amplifier using a Split ADC structure. The open-loop amplifier is employed as a residue amplifier in the first stage of the pipelined ADC to realize low power and high speed. However the residue amplifier as well as the DAC suffer from gain error and non-linearity, and hence they need calibration; conventional background calibration methods take a long time to converge. We investigated the split ADC structure for its background calibration with fast convergence, and validated its effectiveness by MATLAB simulation.

  • ROM-Less Phase to Amplitude Converter Using Sine Wave Approximation Based on Harmonic Removal from Trapezoid Wave

    Hiroomi HIKAWA  

     
    LETTER-Cryptography and Information Security

      Vol:
    E94-A No:7
      Page(s):
    1581-1584

    This paper proposes a new sine wave approximation method for the PAC of DDFS. Sine wave is approximated by removing the harmonic components from trapezoid waveform. Experimental results show that the proposed PAC is advantageous in the SFDR range less than 60 dBc due to its small hardware cost.

  • Error Probability Bounds Analysis of JMLSE Based Interference Cancellation Algorithms for MQAM-OFDM Systems

    Zhenyu ZHOU  Takuro SATO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:7
      Page(s):
    2032-2042

    Due to the reuse factor reduction, the same frequencies are reused in adjacent neighboring cells, which causes an attendant increase in co-channel interference (CCI). CCI has already become the limiting factor in the performance of orthogonal frequency division multiplexing (OFDM) based cellular systems. Joint maximum likelihood sequence estimation (JMLSE) based interference cancellation algorithms have been under intense research. However, despite the fact that the error probability of JMLSE is critical for analyzing the performance, to the best of our knowledge, the mathematical expression has not been derived for MQAM-OFDM yet. Direct computation of the error probability involves integrating a multi-dimensional Gaussian distribution that has no closed-form solution. Therefore, an alternative way is to upper and lower bound the error probability with computable quantities. In this paper, firstly, both the upper and the conventional lower error probability bounds of JMLSE are derived for MQAM-OFDM systems based on a genie-aided receiver. Secondly, in order to reduce the gap between the conventional lower bound and the simulation results, a tighter lower bound is derived by replacing the genie with a less generous one. Thirdly, those derived error probability bounds are generalized to the receiver diversity scheme. These error probability bounds are important new analytical results that can be used to provide rapid and accurate estimation of the BER performance over any MQAM scheme and an arbitrary number of interferers and receive antennas.

5701-5720hit(16314hit)