The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

5721-5740hit(16314hit)

  • An Algorithm for Attitude Signal Simulation Based on Visible Satellite Synchronous Scheduling

    Qing CHANG  Wei QI  Lvqian ZHANG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E94-B No:7
      Page(s):
    2114-2117

    In view of the frequent and complex changes of GNSS visible satellite constellation in attitude determination system, an improved attitude signal simulation algorithm for high dynamic satellite signal simulator is proposed. Based on Software Radio architecture, elevation calculation in the antenna coordinate system and channel state control logic under the condition of carrier attitude changes are introduced into the algorithm to implement synchronous scheduling of visible satellite constellation and attitude signal simulation. This work guarantees the simulator to run constantly and stably for a long time with the advantages of high precision and low complexity. Compared with synchronous positioning results from the receiver, the simulation results show that not only can the output signals of the simulator accurately reflect the carrier's attitude characteristics, but also no step error is generated and the positioning precision is not influenced when visible satellite constellation changes.

  • Frequency Domain Adaptive Antenna Array for Broadband Single-Carrier Uplink Transmission

    Wei PENG  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:7
      Page(s):
    2003-2012

    In this paper, a frequency domain adaptive antenna array (FDAAA) algorithm is proposed for broadband single-carrier uplink transmissions in a cellular system. By employing AAA weight control in the frequency domain, the FDAAA receiver is able to suppress the multi-user interference (MUI) and the co-channel interference (CCI). In addition, the channel frequency selectivity can be exploited to suppress the inter-symbol interference (ISI) and to obtain frequency diversity (or the multi-path diversity). Another advantage of the FDAAA algorithm is that its performance is not affected by the spread of angles of arrival (AOA) of the received multi-path signal. In this study the structure of FDAAA receiver is discussed and the frequency domain signal-to-interference-plus-noise-ratio (SINR) after weight control is investigated. The performance of the FDAAA algorithm is confirmed by simulation results. It is shown that, the optimal FDAAA weight to obtain the best BER performance is that which fully cancels the interference when single-cell system is considered; On the other hand, when multi-cell cellular system is considered, the optimal FDAAA weight depends on both the cellular structure and the target signal to noise ratio (SNR) of transmit power control (TPC).

  • Proposal and Evaluation of a Function-Distributed Mobility Architecture for the Future Internet

    Gen MOTOYOSHI  Kenji LEIBNITZ  Masayuki MURATA  

     
    PAPER-Network

      Vol:
    E94-B No:7
      Page(s):
    1952-1963

    Several task forces have been working on how to design the future Internet in a clean slate manner and mobility management is one of the key issues to be considered. However, mobility management in the future Internet is still being designed in an “all-in-one” way where all management functions are tightly kept at a single location and this results in cost inefficiency that can be an obstruction to constructing flexible systems. In this paper, we propose a new function-distributed mobility management architecture that can enable more flexible future Internet construction. Furthermore, we show the effectiveness of our proposed system via a cost analysis and computer simulation with a random walk mobility model.

  • VoIP Quality Measurement System Using Flow Mediation for Large-Scale IP Networks

    Atsushi KOBAYASHI  Keisuke ISHIBASHI  

     
    PAPER-Network Management/Operation

      Vol:
    E94-B No:7
      Page(s):
    1973-1981

    We present the development of a VoIP quality of service (QoS) measurement system that enables operators to diagnose a QoS degradation segment. Our system uses a flow-based passive measurement method to fulfill the requirement for QoS measurement in large-scale IP networks. In particular, we adopt an access control list (ACL)-based filtering function that selects traffic to monitor and develop a function for correlating signals and media data records. This correlation function is required to dynamically configure ACL-based filtering for monitoring media streams whose port numbers are determined by a signaling protocol. To improve the scalability of existing measurement systems, we also develop a hardware-based filtering engine on a commercial switch as well as a mediation box that performs QoS calculation based on traffic records exported by the engine in a distributed manner. We demonstrate the feasibility of the measurement system by evaluating a prototype system.

  • Enhanced DV-Hop Algorithm with Reduced Hop-Size Error in Ad Hoc Networks

    Sang-Woo LEE  Dong-Yul LEE  Chae-Woo LEE  

     
    LETTER-Network

      Vol:
    E94-B No:7
      Page(s):
    2130-2132

    DV-Hop algorithm produces errors in location estimations due to inaccurate hop size. We propose a novel localization scheme based on DV-Hop to improve positioning accuracy with least error hop sizes of anchors and average hop sizes of unknowns. The least error hop size of an anchor minimizes its location error, but it may be far small or large. To cope with this inconsistent hop size, each unknown node calculates its average hop size with hop sizes from anchors. Simulation results show that the proposed algorithm outperforms the DV-Hop algorithm in location estimations.

  • Toward Simulating the Human Way of Comparing Concepts

    Raul Ernesto MENENDEZ-MORA  Ryutaro ICHISE  

     
    PAPER-Data Engineering, Web Information Systems

      Vol:
    E94-D No:7
      Page(s):
    1419-1429

    An ability to assess similarity lies close to the core of cognition. Its understanding support the comprehension of human success in tasks like problem solving, categorization, memory retrieval, inductive reasoning, etc, and this is the main reason that it is a common research topic. In this paper, we introduce the idea of semantic differences and commonalities between words to the similarity computation process. Five new semantic similarity metrics are obtained after applying this scheme to traditional WordNet-based measures. We also combine the node based similarity measures with a corpus-independent way of computing the information content. In an experimental evaluation of our approach on two standard word pairs datasets, four of the measures outperformed their classical version, while the other performed as well as their unmodified counterparts.

  • A Fast Divide-and-Conquer Algorithm for Indexing Human Genome Sequences

    Woong-Kee LOH  Yang-Sae MOON  Wookey LEE  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E94-D No:7
      Page(s):
    1369-1377

    Since the release of human genome sequences, one of the most important research issues is about indexing the genome sequences, and the suffix tree is most widely adopted for that purpose. The traditional suffix tree construction algorithms suffer from severe performance degradation due to the memory bottleneck problem. The recent disk-based algorithms also provide limited performance improvement due to random disk accesses. Moreover, they do not fully utilize the recent CPUs with multiple cores. In this paper, we propose a fast algorithm based on `divide-and-conquer' strategy for indexing the human genome sequences. Our algorithm nearly eliminates random disk accesses by accessing the disk in the unit of contiguous chunks. In addition, our algorithm fully utilizes the multi-core CPUs by dividing the genome sequences into multiple partitions and then assigning each partition to a different core for parallel processing. Experimental results show that our algorithm outperforms the previous fastest DIGEST algorithm by up to 10.5 times.

  • Efficient Feedback Design for Spatial Phase Coding in MISO-OFDM Systems

    Jeong-Chul SHIN  Jee-Hoon KIM  Hyoung-Kyu SONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:7
      Page(s):
    2149-2152

    Recently, a new diversity scheme called spatial phase coding (SPC) have been introduced. In conventional SPC, it was assumed that the channel phases between the transmit antennas and the receive antenna independently vary. However, practical channel phase dependently vary between neighboring subcarriers. In this letter, a feedback design method which is more efficient than conventional SPC is proposed. Furthermore, the scheme to improve the BER performance of conventional SPC using 1-bit feedback is suggested.

  • Cross-Layer Optimized Rate Adaptation for Video over Wireless Multi-Rate Networks

    Jong-Ok KIM  Hideki TODE  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E94-B No:7
      Page(s):
    2051-2061

    In wireless networks, the mechanism to adaptively select a link transmission rate based on channel variations is referred to as RA (rate adaptation). The operation may have a critical impact on the upper-layer application, specifically video streaming which has strict QoS requirements. Thus, RA should consider the QoS requirements and radio conditions at the same time. In this paper, we present a CV-RA (cross-layer video-oriented rate adaptation) scheme for video transmission over multi-rate wireless networks. The transmission rate is switched in a cross-layer optimized way, by simultaneously considering video R-D (rate-distortion) characteristics as well as wireless conditions. At the radio link layer, transmission rate selection is made using cross-layer optimization. As a result of RA, the effective link throughput dynamically changes. At the application layer, video source rate is adaptively controlled using cross-layer adaptation. CV-RA is compared to three traditional RA schemes. It can realize the highest possible visual communications for any channel condition. For the previous schemes, the variations of visual quality is high due to dynamic packet error rates. In contrast, for CV-RA, visual quality improves with the channel condition.

  • Error Probability Bounds Analysis of JMLSE Based Interference Cancellation Algorithms for MQAM-OFDM Systems

    Zhenyu ZHOU  Takuro SATO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:7
      Page(s):
    2032-2042

    Due to the reuse factor reduction, the same frequencies are reused in adjacent neighboring cells, which causes an attendant increase in co-channel interference (CCI). CCI has already become the limiting factor in the performance of orthogonal frequency division multiplexing (OFDM) based cellular systems. Joint maximum likelihood sequence estimation (JMLSE) based interference cancellation algorithms have been under intense research. However, despite the fact that the error probability of JMLSE is critical for analyzing the performance, to the best of our knowledge, the mathematical expression has not been derived for MQAM-OFDM yet. Direct computation of the error probability involves integrating a multi-dimensional Gaussian distribution that has no closed-form solution. Therefore, an alternative way is to upper and lower bound the error probability with computable quantities. In this paper, firstly, both the upper and the conventional lower error probability bounds of JMLSE are derived for MQAM-OFDM systems based on a genie-aided receiver. Secondly, in order to reduce the gap between the conventional lower bound and the simulation results, a tighter lower bound is derived by replacing the genie with a less generous one. Thirdly, those derived error probability bounds are generalized to the receiver diversity scheme. These error probability bounds are important new analytical results that can be used to provide rapid and accurate estimation of the BER performance over any MQAM scheme and an arbitrary number of interferers and receive antennas.

  • Background Self-Calibration Algorithm for Pipelined ADC Using Split ADC Scheme

    Takuya YAGI  Kunihiko USUI  Tatsuji MATSUURA  Satoshi UEMORI  Satoshi ITO  Yohei TAN  Haruo KOBAYASHI  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E94-C No:7
      Page(s):
    1233-1236

    This brief paper describes a background calibration algorithm for a pipelined ADC with an open-loop amplifier using a Split ADC structure. The open-loop amplifier is employed as a residue amplifier in the first stage of the pipelined ADC to realize low power and high speed. However the residue amplifier as well as the DAC suffer from gain error and non-linearity, and hence they need calibration; conventional background calibration methods take a long time to converge. We investigated the split ADC structure for its background calibration with fast convergence, and validated its effectiveness by MATLAB simulation.

  • A New Threshold Setting Method of GNSS Signal Acquisition under Near-Far Situation

    Liu YANG  Jin TIAN  

     
    PAPER-Satellite Communications

      Vol:
    E94-B No:7
      Page(s):
    2082-2091

    This paper firstly analysis the coherent correlation, non-coherent accumulation detector used in weak satellite signal detection mathematically and statistically, and derives its single threshold based on the CFAR (constant false alarm rate). And then the paper improved the detector under the situation of more than one satellite existing with different signal power. Based on this new type of detector, a threshold calculation method is introduced considering the effect of near-far problem in the weak signal detection. Finally the method is verified and compared to the traditional single threshold with simulated data and collected intermediate frequency real data. The results show that this new threshold method can detect signal efficiently with lower false alarm possibility and larger detection possibility.

  • A Virtual Layered Space-Frequency Receiver Architecture with Iterative Decoding

    Jun IMAMURA  Satoshi DENNO  Daisuke UMEHARA  Masahiro MORIKURA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:7
      Page(s):
    1994-2002

    In this paper, a novel receiver architecture is proposed for multiple-input-multiple-output (MIMO) systems; the proposed architecture helps achieve superior performance in multipath fading channels when the number of layered streams exceeds the number of receiving antennas. In this architecture, the concept of “virtual channel” is adopted to attain diversity gain even when successive detection is applied for reducing computational complexity, while orthogonal frequency division multiplexing (OFDM) is employed to combat multipath fading. Actually, successive detection is carried out in all possible virtual channels, and the virtual channel with the minimum error probability is detected with the assistance of the maximum a-posteriori (MAP) decoder in the architecture. In addition, soft input and soft output (SISO) iterative detection is introduced in the virtual channel estimation scheme. The performance of the proposed architecture is verified by computer simulations. This architecture can be implemented with lesser complexity than that in maximum likelihood detection (MLD), but the gain in the former case exceeds that in the latter by 4.5 dB at the BER of 10-3 for 42 MIMO-OFDM.

  • Lightweight One-Time Signature for Short Messages

    Dae Hyun YUM  Pil Joong LEE  

     
    PAPER-Cryptography and Information Security

      Vol:
    E94-A No:7
      Page(s):
    1567-1575

    One-time signature schemes have been used as an important cryptographic tool for various applications. To generate a signature on a message, the state-of-the-art one-time signature requires roughly one hash function evaluation and one modular multiplication. We propose a new one-time signature scheme for short messages that needs only one integer multiplication (i.e., without modular reduction or hash function evaluation). Theoretically, our construction is based on a generic transformation from identification protocols secure against active attacks into secure one-time signature schemes for short messages, where the Fiat-Shamir technique is not used. To obtain efficient instantiation of the transformation, we prove that the GPS identification protocol is secure against active attacks, which may be of independent interest.

  • Data Gathering by Mobile Sinks with Data-Centric Probe in Sensor Networks

    Dongook SEONG  Junho PARK  Jihee LEE  Myungho YEO  Jaesoo YOO  

     
    LETTER-Network

      Vol:
    E94-B No:7
      Page(s):
    2133-2136

    Many methods have been researched to prolong the lifetime of sensor networks that use mobile technologies. In the mobile sink research, there are the track based methods and the anchor points based methods as representative operation methods for mobile sinks. However, most existing methods decrease the Quality of Service (QoS) and lead to routing hotspots in the vicinity of the mobile sinks. The main reason is that they use static mobile sink movement paths that ignore the network environment such as the query position and the data priority. In this paper, we propose a novel mobile sink operation method that solves the problems of the existing methods. In our method, the probe priority of the mobile sink is determined from data priority to increase the QoS. The mobility of sink used to reduce the routing hotspot. Experiments show that the proposed method reduces the query response time and improves the network lifetime much more than the existing methods.

  • Localization with Ratio-Distance (LRD) for Distributed and Accurate Localization in Wireless Sensor Networks

    Kouakou Jean Marc ATTOUNGBLE  Kazunori OKADA  

     
    PAPER-Network

      Vol:
    E94-B No:7
      Page(s):
    1944-1951

    These days, cheap and intelligent sensors, networked through wireless links and deployed in large numbers, provide unprecedented opportunities for monitoring and controlling homes, cities and the environment. Networked sensors also offer a broad range of applications. Localization capability is essential in most wireless sensor networks applications; for instance in environmental monitoring applications such as animal habitat monitoring, bush fire surveillance, water quality monitoring and precision agriculture, the measurement data are meaningless without accurate knowledge of where they are obtained. Localization techniques are used to determine location information by estimating the location of each sensor node. Distance measurement errors are commonly known to affect the accuracy of the estimated location; resulting in errors that may be due to inherent or environmental factors. Trilateration [1] is a well-known method for localizing nodes by using the distances to three anchor nodes; yet it performs poorly when they are many distance measurement errors. Therefore, we propose the LRD (Localization with Ratio-Distance) algorithm, which performs strongly even in the presence of many measurement errors associated with the estimated distance to anchor nodes. Simulations using the OPNET Modeler show that LRD is more accurate than trilateration.

  • Novel Miniaturized Harmonic Suppression Branch-Line Coupler Using Artificial Transmission Lines for UHF Applications

    Chia-Hao KU  Hsien-Wen LIU  Yu-Shu LIN  Kuei-Yi LIN  Pao-Jen WANG  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E94-C No:7
      Page(s):
    1237-1239

    A planar miniaturized branch-line coupler with harmonic suppression property for UHF band applications is presented in this paper. By properly synthesizing the LC-tanks that employ artificial transmission lines, two pairs of quarter-wavelength branch-lines to respectively meet characteristic impedances of 35.4 and 50 ohms can be obtained with the coupler. For the operating band, it can achieve good 3 dB power division with a 90° phase difference in the outputs of the through and coupled arms. The coupler also has a small area of 20.5(L)18(W) mm2, corresponding to 0.11 λg0.1 λg at 922 MHz. Compared with conventional couplers, the proposed design not only offers a wide bandwidth of more than 230 MHz within 1° or 1 dB, but also works with additional harmonic suppression for achieving better performance. Therefore, the proposed branch-line coupler with a compact size is well suitable for power division application.

  • All-Optical NRZ-to-RZ Data Format Conversion with Picosecond Duration-Tunable and Pedestal Suppressed Operations

    Quang NGUYEN-THE  Motoharu MATSUURA  Hung NGUYEN TAN  Naoto KISHI  

     
    PAPER

      Vol:
    E94-C No:7
      Page(s):
    1160-1166

    We demonstrate an all-optical picosecond pulse duration-tunable nonreturn-to-zero (NRZ)-to-return-to-zero (RZ) data format conversion using a Raman amplifier-based compressor and a fiber-based four-wave mixing (FWM) switch. A NRZ data signal is injected into the fiber-based FWM switch (AND gate) with a compressed RZ clock by the Raman amplifier-based compressor, and convert to RZ data signal by the fiber-based FWM switch. The compressed RZ clock train acts as a pump signal in the fiber-based FWM switch to perform the NRZ-to-RZ data format conversion. By changing the Raman pump power of the Raman amplifier-based compressor, it is possible to tune the pulse duration of the converted RZ data signal from 15 ps to 2 ps. In all the tuning range, the receiver sensitivity at bit error rate (BER) of 10-9 for the converted RZ data signal was about 1.31.7 dB better than the receiver sensitivity of the input NRZ data signal. Moreover, the pulse pedestal of the converted RZ data signals is well suppressed owing to the FWM process in the fiber-based FWM switch.

  • Processor Accelerator Customization through Data Flow Graph Exploration

    Kang ZHAO  Jinian BIAN  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E94-A No:7
      Page(s):
    1540-1552

    To reduce the huge search space when customizing accelerators for the application specific instruction-set processor (ASIP), this paper proposes an automated customization method based on the data flow graph exploration. This method integrates the instruction identification and selection using an iterative improvement strategy, which uses a seed-growth algorithm to select the valid patterns that can bring higher performance enhancement. The search space is reduced by considering the performance factors during the identification stage. The experimental results indicate that the proposed method is feasible enough compared to the previous exhaustive algorithms.

  • Novel Channel Estimation Method Based on Training Sequence Cyclic Reconstruction for TDS-OFDM System

    Zhenyu LIU  Fang YANG  Jian SONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:7
      Page(s):
    2158-2160

    In this paper, a novel channel estimation method for time domain synchrotrons orthogonal frequency domain multiplexing (TDS-OFDM) based on training sequence cyclic reconstruction is proposed to eliminate residual inter-block interference (IBI); it estimates the channel impulse response (CIR) in an iterative manner. A simulation and analysis show that the proposed method can effectively perform the channel estimation over long-delay multipath channels with low complexity.

5721-5740hit(16314hit)