Shinpei HAYASHI Teppei KATO Motoshi SAEKI
Use case descriptions describe features consisting of multiple concepts with following a procedural flow. Because existing feature location techniques lack a relation between concepts in such features, it is difficult to identify the concepts in the source code with high accuracy. This paper presents a technique to locate concepts in a feature described in a use case description consisting of multiple use case steps using dependency between them. We regard each use case step as a description of a concept and apply an existing concept location technique to the descriptions of concepts and obtain lists of modules. Also, three types of dependencies: time, call, and data dependencies among use case steps are extracted based on their textual description. Modules in the obtained lists failing to match the dependency between concepts are filtered out. Thus, we can obtain more precise lists of modules. We have applied our technique to use case descriptions in a benchmark. Results show that our technique outperformed baseline setting without applying the filtering.
Taiki ARAKAWA Kazuhiro YAMAGUCHI Kazunori KAMEDA Shinichi FURUKAWA
We study the device length and/or band characteristics examined by two coupling analysis methods for our proposed fiber-type polarization splitter (FPS) composed of single mode fiber and polarization maintaining fiber. The first method is based on the power transition characteristics of the coupled-mode theory (CMT), and the second, a more accurate analysis method, is based on improved fundamental mode excitation (IFME). The CMT and IFME were evaluated and investigated with respect to the device length and bandwidth characteristics of the FPS. In addition, the influence of the excitation point shift of the fundamental mode, which has not been almost researched so far, is also analysed by using IFME.
Muhammad FAWAD RAHIM Tessai HAYAMA
In recent years, location-based technologies for ubiquitous environments have aimed to realize services tailored to each purpose based on information about an individual's current location. To establish such advanced location-based services, an estimation technology that can accurately recognize and predict the movements of people and objects is necessary. Although global positioning system (GPS) has already been used as a standard for outdoor positioning technology and many services have been realized, several techniques using conventional wireless sensors such as Wi-Fi, RFID, and Bluetooth have been considered for indoor positioning technology. However, conventional wireless indoor positioning is prone to the effects of noise, and the large range of estimated indoor locations makes it difficult to identify human activities precisely. We propose a method to mine user activity patterns from time-series data of user's locationss in an indoor environment using ultra-wideband (UWB) sensors. An UWB sensor is useful for indoor positioning due to its high noise immunity and measurement accuracy, however, to our knowledge, estimation and prediction of human indoor activities using UWB sensors have not yet been addressed. The proposed method consists of three steps: 1) obtaining time-series data of the user's location using a UWB sensor attached to the user, and then estimating the areas where the user has stayed; 2) associating each area of the user's stay with a nearby landmark of activity and assigning indoor activities; and 3) mining the user's activity patterns based on the user's indoor activities and their transitions. We conducted experiments to evaluate the proposed method by investigating the accuracy of estimating the user's area of stay using a UWB sensor and observing the results of activity pattern mining applied to actual laboratory members over 30-days. The results showed that the proposed method is superior to a comparison method, Time-based clustering algorithm, in estimating the stay areas precisely, and that it is possible to reveal the user's activity patterns appropriately in the actual environment.
Wei ZHENG Hao HU Tengfei CHEN Fengyu YANG Xin FAN Peng XIAO
Providing students with useful feedback on faulty programs can effectively help students fix programs. Spectrum-Based Fault Location (SBFL), which is a widely studied and lightweight technique, can automatically generate a suspicious value of statement ranking to help users find potential faults in a program. However, the performance of SBFL on student programs is not satisfactory, to improve the accuracy of SBFL in student programs, we propose a novel Multi-Correct Programs based Fault Localization (MCPFL) approach. Specifically, We first collected the correct programs submitted by students on the OJ system according to the programming problem numbers and removed the highly similar correct programs based on code similarity, and then stored them together with the faulty program to be located to construct a set of programs. Afterward, we analyzed the suspiciousness of the term in the faulty program through the Term Frequency-Inverse Document Frequency (TF-IDF). Finally, we designed a formula to calculate the weight of suspiciousness for program statements based on the number of input variables in the statement and weighted it to the spectrum-based fault localization formula. To evaluate the effectiveness of MCPFL, we conducted empirical studies on six student program datasets collected in our OJ system, and the results showed that MCPFL can effectively improve the traditional SBFL methods. In particular, on the EXAM metric, our approach improves by an average of 27.51% on the Dstar formula.
Akio KAWABATA Bijoy CHAND CHATTERJEE Eiji OKI
This paper proposes a network design model, considering data consistency for a delay-sensitive distributed processing system. The data consistency is determined by collating the own state and the states of slave servers. If the state is mismatched with other servers, the rollback process is initiated to modify the state to guarantee data consistency. In the proposed model, the selected servers and the master-slave server pairs are determined to minimize the end-to-end delay and the delay for data consistency. We formulate the proposed model as an integer linear programming problem. We evaluate the delay performance and computation time. We evaluate the proposed model in two network models with two, three, and four slave servers. The proposed model reduces the delay for data consistency by up to 31 percent compared to that of a typical model that collates the status of all servers at one master server. The computation time is a few seconds, which is an acceptable time for network design before service launch. These results indicate that the proposed model is effective for delay-sensitive applications.
Naoto MATSUO Akira HEYA Kazushige YAMANA Koji SUMITOMO Tetsuo TABEI
The influence of the gate voltage or base pair ratio modulation on the λ-DNA FET performance was examined. The result of the gate voltage modulation indicated that the captured electrons in the guanine base of the λ-DNA molecules greatly influenced the Id-Vd characteristics, and that of the base pair ratio modulation indicated that the tendency of the conductivity was partly clarified by considering the activation energy of holes and electrons and the length and numbers of the serial AT or GC sequences over which the holes or electrons jumped. In addition, the influence of the dimensionality of the DNA molecule on the conductivity was discussed theoretically.
Juntong HONG Eunjong CHOI Osamu MIZUNO
Code search is a task to retrieve the most relevant code given a natural language query. Several recent studies proposed deep learning based methods use multi-encoder model to parse code into multi-field to represent code. These methods enhance the performance of the model by distinguish between similar codes and utilizing a relation matrix to bridge the code and query. However, these models require more computational resources and parameters than single-encoder models. Furthermore, utilizing the relation matrix that solely relies on max-pooling disregards the delivery of word alignment information. To alleviate these problems, we propose a combined alignment model for code search. We concatenate the multi-code fields into one sequence to represent code and use one encoding model to encode code features. Moreover, we transform the relation matrix using trainable vectors to avoid information losses. Then, we combine intra-modal and cross-modal attention to assign the salient words while matching the corresponding code and query. Finally, we apply the attention weight to code/query embedding and compute the cosine similarity. To evaluate the performance of our model, we compare our model with six previous models on two popular datasets. The results show that our model achieves 0.614 and 0.687 Top@1 performance, outperforming the best comparison models by 12.2% and 9.3%, respectively.
Ikuto YAMAGATA Masateru TSUNODA Keitaro NAKASAI
Software development companies must consider employees' job satisfaction and turnover intentions. To explain the related factors, this study focused on future perspective index (FPI). FPI was assumed to relate positively to satisfaction and negatively to turnover. In the analysis, we compared the FPI with existing factors that are considered to be related to job satisfaction. We discovered that the FPI was promising for enhancing explanatory power, particularly when analyzing satisfaction.
Hiroshi FUJIWARA Keiji HIRAO Hiroaki YAMAMOTO
In Variant 4 of the one-way trading game [El-Yaniv, Fiat, Karp, and Turpin, 2001], a player has one dollar at the beginning and wants to convert it to yen only by one-way conversion. The exchange rate is guaranteed to fluctuate between m and M, and only the maximum fluctuation ratio φ = M/m is informed to the player in advance. The performance of an algorithm for this game is measured by the competitive ratio. El-Yaniv et al. derived the best possible competitive ratio over all algorithms for this game. However, it seems that the behavior of the best possible algorithm itself has not been explicitly described. In this paper we reveal the behavior of the best possible algorithm by solving a linear optimization problem. The behavior turns out to be quite different from that of the best possible algorithm for Variant 2 in which the player knows m and M in advance.
So KOIDE Yoshiaki TAKATA Hiroyuki SEKI
Synthesis problems on multiplayer non-zero-sum games (MG) with multiple environment players that behave rationally are the problems to find a good strategy of the system and have been extensively studied. This paper concerns the synthesis problems on stochastic MG (SMG), where a special controller other than players, called nature, which chooses a move in its turn randomly, may exist. Two types of synthesis problems on SMG exist: cooperative rational synthesis problem (CRSP) and non-cooperative rational synthesis problem (NCRSP). The rationality of environment players is modeled by Nash equilibria, and CRSP is the problem to decide whether there exists a Nash equilibrium that gives the system a payoff not less than a given threshold. Ummels et al. studied the complexity of CRSP for various classes of objectives and strategies of players. CRSP fits the situation where the system can make a suggestion of a strategy profile (a tuple of strategies of all players) to the environment players. However, in real applications, the system may rarely have an opportunity to make suggestions to the environment, and thus CRSP is optimistic. NCRSP is the problem to decide whether there exists a strategy σ0 of the system satisfying that for every strategy profile of the environment players that forms a 0-fixed Nash equilibrium (a Nash equilibrium where the system's strategy is fixed to σ0), the system obtains a payoff not less than a given threshold. In this paper, we investigate the complexity of NCRSP for positional (i.e. pure memoryless) strategies. We consider ω-regular objectives as the model of players' objectives, and show the complexity results of the problem for several subclasses of ω-regular objectives. In particular, the problem for terminal reachability (TR) objectives is shown to be Σp2-complete.
Yang YU Longlong LIU Ye ZHU Shixin CEN Yang LI
Pedestrian attribute recognition (PAR) aims to recognize a series of a person's semantic attributes, e.g., age, gender, which plays an important role in video surveillance. This paper proposes a multi-correlation graph convolutional network named MCGCN for PAR, which includes a semantic graph, visual graph, and synthesis graph. We construct a semantic graph by using attribute features with semantic constraints. A graph convolution is employed, based on prior knowledge of the dataset, to learn the semantic correlation. 2D features are projected onto visual graph nodes and each node corresponds to the feature region of each attribute group. Graph convolution is then utilized to learn regional correlation. The visual graph nodes are connected to the semantic graph nodes to form a synthesis graph. In the synthesis graph, regional and semantic correlation are embedded into each other through inter-graph edges, to guide each other's learning and to update the visual and semantic graph, thereby constructing semantic and regional correlation. On this basis, we use a better loss weighting strategy, the suit_polyloss, to address the imbalance of pedestrian attribute datasets. Experiments on three benchmark datasets show that the proposed approach achieves superior recognition performance compared to existing technologies, and achieves state-of-the-art performance.
Masahiro NISHIMURA Taito MANABE Yuichiro SHIBATA
This paper presents an FPGA implementation of real-time high dynamic range (HDR) synthesis, which expresses a wide dynamic range by combining multiple images with different exposures using image pyramids. We have implemented a pipeline that performs streaming processing on images without using external memory. However, implementation for high-resolution images has been difficult due to large memory usage for line buffers. Therefore, we propose an image compression algorithm based on adaptive differential pulse code modulation (ADPCM). Compression modules based on the algorithm can be easily integrated into the pipeline. When the image resolution is 4K and the pyramid depth is 7, memory usage can be halved from 168.48% to 84.32% by introducing the compression modules, resulting in better quality.
In the field of machine learning security, as one of the attack surfaces especially for edge devices, the application of side-channel analysis such as correlation power/electromagnetic analysis (CPA/CEMA) is expanding. Aiming to evaluate the leakage resistance of neural network (NN) model parameters, i.e. weights and biases, we conducted a feasibility study of CPA/CEMA on floating-point (FP) operations, which are the basic operations of NNs. This paper proposes approaches to recover weights and biases using CPA/CEMA on multiplication and addition operations, respectively. It is essential to take into account the characteristics of the IEEE 754 representation in order to realize the recovery with high precision and efficiency. We show that CPA/CEMA on FP operations requires different approaches than traditional CPA/CEMA on cryptographic implementations such as the AES.
Ryosuke MATSUO Shin-ichi MINATO
Logic circuits based on a photonic integrated circuit (PIC) have attracted significant interest due to their ultra-high-speed operation. However, they have a fundamental disadvantage that a large amount of the optical signal power is discarded in the path from the optical source to the optical output, which results in significant power consumption. This optical signal power loss is called a garbage output. To address this issue, this paper considers a circuit design without garbage outputs. Although a method for synthesizing an optical logic circuit without garbage outputs is proposed, this synthesis method can not obtain the optimal solution, such as a circuit with the minimum number of gates. This paper proposes a cross-bar gate logic (CBGL) as a new logic structure for optical logic circuits without garbage outputs, moreover enumerates the CBGLs with the minimum number of gates for all three input logic functions by an exhaustive search. Since the search space is vast, our enumeration algorithm incorporates a technique to prune it efficiently. Experimental results for all three-input logic functions demonstrate that the maximum number of gates required to implement the target function is five. In the best case, the number of gates in enumerated CBGLs is one-half compared to the existing method for optical logic circuits without garbage outputs.
Kenichi FUJITA Atsushi ANDO Yusuke IJIMA
This paper proposes a speech rhythm-based method for speaker embeddings to model phoneme duration using a few utterances by the target speaker. Speech rhythm is one of the essential factors among speaker characteristics, along with acoustic features such as F0, for reproducing individual utterances in speech synthesis. A novel feature of the proposed method is the rhythm-based embeddings extracted from phonemes and their durations, which are known to be related to speaking rhythm. They are extracted with a speaker identification model similar to the conventional spectral feature-based one. We conducted three experiments, speaker embeddings generation, speech synthesis with generated embeddings, and embedding space analysis, to evaluate the performance. The proposed method demonstrated a moderate speaker identification performance (15.2% EER), even with only phonemes and their duration information. The objective and subjective evaluation results demonstrated that the proposed method can synthesize speech with speech rhythm closer to the target speaker than the conventional method. We also visualized the embeddings to evaluate the relationship between the distance of the embeddings and the perceptual similarity. The visualization of the embedding space and the relation analysis between the closeness indicated that the distribution of embeddings reflects the subjective and objective similarity.
Chikako TAKASAKI Tomohiro KORIKAWA Kyota HATTORI Hidenari OHWADA
In the beyond 5G and 6G networks, the number of connected devices and their types will greatly increase including not only user devices such as smartphones but also the Internet of Things (IoT). Moreover, Non-terrestrial networks (NTN) introduce dynamic changes in the types of connected devices as base stations or access points are moving objects. Therefore, continuous network capacity design is required to fulfill the network requirements of each device. However, continuous optimization of network capacity design for each device within a short time span becomes difficult because of the heavy calculation amount. We introduce device types as groups of devices whose traffic characteristics resemble and optimize network capacity per device type for efficient network capacity design. This paper proposes a method to classify device types by analyzing only encrypted traffic behavior without using payload and packets of specific protocols. In the first stage, general device types, such as IoT and non-IoT, are classified by analyzing packet header statistics using machine learning. Then, in the second stage, connected devices classified as IoT in the first stage are classified into IoT device types, by analyzing a time series of traffic behavior using deep learning. We demonstrate that the proposed method classifies device types by analyzing traffic datasets and outperforms the existing IoT-only device classification methods in terms of the number of types and the accuracy. In addition, the proposed model performs comparable as a state-of-the-art model of traffic classification, ResNet 1D model. The proposed method is suitable to grasp device types in terms of traffic characteristics toward efficient network capacity design in networks where massive devices for various services are connected and the connected devices continuously change.
Kota HISAFURU Kazunari TAKASAKI Nozomu TOGAWA
In recent years, with the wide spread of the Internet of Things (IoT) devices, security issues for hardware devices have been increasing, where detecting their anomalous behaviors becomes quite important. One of the effective methods for detecting anomalous behaviors of IoT devices is to utilize consumed energy and operation duration time extracted from their power waveforms. However, the existing methods do not consider the shape of time-series data and cannot distinguish between power waveforms with similar consumed energy and duration time but different shapes. In this paper, we propose a method for detecting anomalous behaviors based on the shape of time-series data by incorporating a shape-based distance (SBD) measure. The proposed method first obtains the entire power waveform of the target IoT device and extracts several application power waveforms. After that, we give the invariances to them, and we can effectively obtain the SBD between every two application power waveforms. Based on the SBD values, the local outlier factor (LOF) method can finally distinguish between normal application behaviors and anomalous application behaviors. Experimental results demonstrate that the proposed method successfully detects anomalous application behaviors, while the existing state-of-the-art method fails to detect them.
Hiroki URASAWA Hayato SOYA Kazuhiro YAMAGUCHI Hideaki MATSUE
We evaluated the transmission performance, including received power and transmission throughput characteristics, in 4×4 single-user multiple-input multiple-output (SU-MIMO) transmission for synchronous time division duplex (TDD) and downlink data channels in comparison with single-input single-output (SISO) transmission in an environment where a local 5G wireless base station was installed on the roof of a research building at our university. Accordingly, for the received power characteristics, the difference between the simulation value, which was based on the ray tracing method, and the experimental value at 32 points in the area was within a maximum difference of approximately 10 dB, and sufficient compliance was obtained. Regarding the transmission throughput versus received power characteristics, after showing a simulation method for evaluating throughput characteristics in MIMO, we compared the results with experimental results. The cumulative distribution function (CDF) of the transmission throughput shows that, at a CDF of 50%, in SISO transmission, the simulated value is approximately 115Mbps, and the experimental value is 105Mbps, within a difference of approximately 10Mbps. By contrast, in MIMO transmission, the simulation value is 380Mbps, and the experimental value is approximately 420Mbps, which is a difference of approximately 40Mbps. It was shown that the received power and transmission throughput characteristics can be predicted with sufficient accuracy by obtaining the delay profile and the system model at each reception point using the both ray tracing and MIMO simulation methods in actual environments.
Yu ZHOU Jianyong HU Xudong MIAO Xiaoni DU
Low confusion coefficient values can make side-channel attacks harder for vector Boolean functions in Block cipher. In this paper, we give new results of confusion coefficient for f ⊞ g, f ⊡ g, f ⊕ g and fg for different Boolean functions f and g, respectively. And we deduce a relationship on the sum-of-squares of the confusion coefficient between one n-variable function and two (n - 1)-variable decomposition functions. Finally, we find that the confusion coefficient of vector Boolean functions is affine invariant.
Ryunosuke MUROFUSHI Nobuhiro KUGA Eiji HANAYAMA
In this paper, a concept of non-contact PIM evaluation method using balanced transmission lines is proposed for impedance-matched PIM measurement systems. In order to evaluate the PIM characteristics of a MSL by using its image model, measurement system using balanced transmission line is introduced. In non-contact PIM measurement, to reduce undesirable PIM generation by metallic contact and the PIM-degradation in repeated measurements, a non-contact connector which is applicable without any design changes in DUT is introduce. The three-dimensional balun composed of U-balun and balanced transmission line is also proposed so that it can be applicable to conventional unbalanced PIM measurement systems. In order to validate the concept of the proposed system, a sample using nickel producing high PIM is introduced. In order to avoid the effect of the non-contact connection part on observed PIM, a sample-configuration that PIM-source exists outside of the non-contact connection part is introduced. It is also shown using a sample using copper that, nickel-sample can be clearly differentiated in PIM characteristics while it is equivalent to low-PIM sample in scattering-parameter characteristics. Finally, by introducing the TRL-calibration and by extracting inherent DUT-characteristics from whole-system characteristics, a method to estimate the PIM characteristics of DUT which cannot be taken directly in measurement is proposed.