The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SiON(4624hit)

2621-2640hit(4624hit)

  • Decision Directed Scheme for IQ Imbalance Compensation on OFCDM Direct Conversion Receiver

    Tadaaki YUBA  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:1
      Page(s):
    184-190

    Recently, the direct conversion scheme has been actively investigated for the purpose of cost miniaturization and low power consumption of wireless receivers. IQ imbalance is one of the problems for the direct conversion receiver. In the case of OFCDM modulations, this IQ imbalance causes intercarrier interference (ICI) in the demodulated signals. In this paper, the decision directed scheme for IQ imbalance compensation is proposed. In the proposed scheme, the combination of received symbols which satisfies orthogonality conditions is used for compensation of IQ imbalance. Therefore, in addition to the pilot symbols, the received symbols can be used in order to improve the accuracy of the compensation matrix and BER can be reduced.

  • A Novel Test-Bed for Immersive and Interactive Broadcasting Production Using Augmented Reality and Haptics

    Seungjun KIM  Jongeun CHA  Jongphil KIM  Jeha RYU  Seongeun EOM  Nitaigour P. MAHALIK  Byungha AHN  

     
    LETTER

      Vol:
    E89-D No:1
      Page(s):
    106-110

    In this paper, we demonstrate an immersive and interactive broadcasting production system with a new haptically enhanced multimedia broadcasting chain. The system adapts Augmented Reality (AR) techniques, which merges captured videos and virtual 3D media seamlessly through multimedia streaming technology, and haptic interaction technology in near real-time. In this system, viewers at the haptic multimedia client can interact with AR broadcasting production transmitted via communication network. We demonstrate two test applications, which show that the addition of AR- and haptic-interaction to the conventional audio-visual contents can improve immersiveness and interactivity of viewers with rich contents service.

  • Best Security Index for Digital Fingerprinting

    Kozo BANNO  Shingo ORIHARA  Takaaki MIZUKI  Takao NISHIZEKI  

     
    PAPER-Information Hiding

      Vol:
    E89-A No:1
      Page(s):
    169-177

    Digital watermarking used for fingerprinting may receive a collusion attack; two or more users collude, compare their data, find a part of embedded watermarks, and make an unauthorized copy by masking their identities. In this paper, assuming that at most c users collude, we give a characterization of the fingerprinting codes that have the best security index in a sense of "(c,p/q)-secureness" proposed by Orihara et al. The characterization is expressed in terms of intersecting families of sets. Using a block design, we also show that a distributor of data can only find asymptotically a set of c users including at least one culprit, no matter how good fingerprinting code is used.

  • Stereo Matching Algorithm Using a Simplified Trellis Diagram Iteratively and Bi-Directionally

    Tran Thai SON  Seiichi MITA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E89-D No:1
      Page(s):
    314-325

    This paper presents an approach that uses the Viterbi algorithm in a stereo correspondence problem. We propose a matching process which is visualized as a trellis diagram to find the maximum a posterior result. The matching process is divided into two parts: matching the left scene to the right scene and matching the right scene to the left scene. The last result of stereo problem is selected based on the minimum error for uniqueness by a comparison between the results of the two parts of matching process. This makes the stereo matching possible without explicitly detecting occlusions. Moreover, this stereo matching algorithm can improve the accuracy of the disparity image, and it has an acceptable running time for practical applications since it uses a trellis diagram iteratively and bi-directionally. The complexity of our proposed method is shown approximately as O(N2P), in which N is the number of disparity, and P is the length of the epipolar line in both the left and right images. Our proposed method has been proved to be robust when applied to well-known samples of stereo images such as random dot, Pentagon, Tsukuba image, etc. It provides a 95.7 percent of accuracy in radius 1 (differing by 1) for the Tsukuba images.

  • Analysis of Electromagnetic Fields in Inhomogeneous Media by Fourier Series Expansion Methods--The Case of a Dielectric Constant Mixed a Positive and Negative Regions--

    Tsuneki YAMASAKI  Katsuji ISONO  Takashi HINATA  

     
    PAPER-EM Analysis

      Vol:
    E88-C No:12
      Page(s):
    2216-2222

    In this paper, we propose a new method for the electromagnetic fields with inhomogeneous media mixed a positive and negative regions by the combination of improved Fourier series expansion method using the extrapolation method which obtains the correct value of the eigenvalue and eigenvectors for the case of TM wave. Numerical results are given for the power reflection and transmission coefficient, the energy absorption, the electromagnetic fields, and the power flow in the inhomogeneous medium mixed the positive and negative regions including the case when the permittivity profiles touches zero for the TM wave. The results of our method are in good agreement with exact solution which is obtained the modified multilayer approximation method.

  • Some Classes of Quasi-Cyclic LDPC Codes: Properties and Efficient Encoding Method

    Hachiro FUJITA  Kohichi SAKANIWA  

     
    PAPER-Coding Theory

      Vol:
    E88-A No:12
      Page(s):
    3627-3635

    Low-density parity-check (LDPC) codes are one of the most promising next-generation error-correcting codes. For practical use, efficient methods for encoding of LDPC codes are needed and have to be studied. However, it seems that no general encoding methods suitable for hardware implementation have been proposed so far and for randomly constructed LDPC codes there have been no other methods than the simple one using generator matrices. In this paper we show that some classes of quasi-cyclic LDPC codes based on circulant permutation matrices, specifically LDPC codes based on array codes and a special class of Sridhara-Fuja-Tanner codes and Fossorier codes can be encoded by division circuits as cyclic codes, which are very easy to implement. We also show some properties of these codes.

  • FPGA Implementation of a Stereo Matching Processor Based on Window-Parallel-and-Pixel-Parallel Architecture

    Masanori HARIYAMA  Yasuhiro KOBAYASHI  Haruka SASAKI  Michitaka KAMEYAMA  

     
    PAPER-VLSI Architecture

      Vol:
    E88-A No:12
      Page(s):
    3516-3522

    This paper presents a processor architecture for high-speed and reliable stereo matching based on adaptive window-size control of SAD (Sum of Absolute Differences) computation. To reduce its computational complexity, SADs are computed using images divided into non-overlapping regions, and the matching result is iteratively refined by reducing a window size. Window-parallel-and-pixel-parallel architecture is also proposed to achieve to fully exploit the potential parallelism of the algorithm. The architecture also reduces the complexity of an interconnection network between memory and functional units based on the regularity of reference pixels. The stereo matching processor is implemented on an FPGA. Its performance is 80 times higher than that of a microprocessor (Pentium4@2 GHz), and is enough to generate a 3-D depth image at the video rate of 33 MHz.

  • A High Performance CMOS Direct Down Conversion Mixer for UWB System

    Tuan-Anh PHAN  Chang-Wan KIM  Yun-A SHIM  Sang-Gug LEE  

     
    PAPER-Devices

      Vol:
    E88-C No:12
      Page(s):
    2316-2321

    This paper presents a high performance wideband CMOS direct down-conversion mixer for UWB based on 0.18 µm CMOS technology. The proposed mixer uses the current bleeding technique and an extra resonant inductor to improve the conversion gain, noise figure (NF) and linearity. Also, with an extra inductor and the careful choosing of transistor sizes, the mixer has a very low flicker noise. The shunt resistor matching is applied to have a 528 MHz bandwidth matching at 50 Ohm. The simulation results show the voltage conversion gain of 20.5 dB, the double-side band NF of 5.6 dB. Two-tone test result indicates 11.25 dBm of IIP3 and higher than 70 dBm of IIP2. The circuit operates at the supply voltage of 1.8 V, and dissipates 11.5 mW.

  • Exact Minimization of FPRMs for Incompletely Specified Functions by Using MTBDDs

    Debatosh DEBNATH  Tsutomu SASAO  

     
    PAPER-Logic Synthesis

      Vol:
    E88-A No:12
      Page(s):
    3332-3341

    Fixed polarity Reed-Muller expressions (FPRMs) exhibit several useful properties that make them suitable for many practical applications. This paper presents an exact minimization algorithm for FPRMs for incompletely specified functions. For an n-variable function with α unspecified minterms there are 2n+α distinct FPRMs, and a minimum FPRM is one with the fewest product terms. To find a minimum FPRM the algorithm requires to determine an assignment of the incompletely specified minterms. This is accomplished by using the concept of integer-valued functions in conjunction with an extended truth vector and a weight vector. The vectors help formulate the problem as an assignment of the variables of integer-valued functions, which are then efficiently manipulated by using multi-terminal binary decision diagrams for finding an assignment of the unspecified minterms. The effectiveness of the algorithm is demonstrated through experimental results for code converters, adders, and randomly generated functions.

  • Successive Pad Assignment for Minimizing Supply Voltage Drop

    Takashi SATO  Masanori HASHIMOTO  Hidetoshi ONODERA  

     
    PAPER-Power/Ground Network

      Vol:
    E88-A No:12
      Page(s):
    3429-3436

    An efficient pad assignment methodology to minimize voltage drop on a power distribution network is proposed. A combination of successive pad assignment (SPA) with incremental matrix inversion (IMI) determines both location and number of power supply pads to satisfy drop voltage constraint. The SPA creates an equivalent resistance matrix which preserves both pad candidates and power consumption points as external ports so that topological modification due to connection or disconnection between voltage sources and candidate pads is consistently represented. By reusing sub-matrices of the equivalent matrix, the SPA greedily searches the next pad location that minimizes the worst drop voltage. Each time a candidate pad is added, the IMI reduces computational complexity significantly. Experimental results including a 400 pad problem show that the proposed procedures efficiently enumerate pad order in a practical time.

  • Computational Methods for Surface Relief Gratings Using Electric and Magnetic Flux Expansions

    Minoru KOMATSU  Hideaki WAKABAYASHI  Jiro YAMAKITA  

     
    PAPER-EM Analysis

      Vol:
    E88-C No:12
      Page(s):
    2192-2198

    The relative permittivity and permeability are discontinuous at the grating profile, and the electric and magnetic flux densities are continuous. As for the method of analysis for scattering waves by surface relief gratings placed in conical mounting, the spatial harmonic expansion approach of the flux densities are formulated in detail and the validity of the approach is shown numerically. The present method is effective for uniform regions such as air and substrate in addition to grating layer. The matrix formulations are introduced by using numerical calculations of the matrix eigenvalue problem in the grating region and analytical solutions separated for TE and TM waves in the uniform region are described. Some numerical examples for linearly and circularly polarized incidence show the usefulness of the flux densities expansion approach.

  • A Hardware Algorithm for Modular Multiplication/Division Based on the Extended Euclidean Algorithm

    Marcelo E. KAIHARA  Naofumi TAKAGI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E88-A No:12
      Page(s):
    3610-3617

    A hardware algorithm for modular multiplication/division which performs modular division, Montgomery multiplication, and ordinary modular multiplication is proposed. The modular division in our algorithm is based on the extended Euclidean algorithm. We employ our newly proposed computation method that consists of processing the multiplier from the most significant digit first to calculate Montgomery multiplication. Finally, the ordinary modular multiplication is based on shift-and-add multiplication. Each of these three operations is carried out through the iteration of simple operations such as shifts and additions/subtractions. To avoid carry propagation in all additions and subtractions, the radix-2 signed-digit representation is employed. A modular multiplier/divider based on the algorithm has a linear array structure with a bit-slice feature and carries out n-bit modular multiplication/division in O(n) clock cycles, where the length of the clock cycle is constant and independent of n. This multiplier/divider can be implemented using a hardware amount only slightly larger than that of the modular divider.

  • Interference Cancellation with DFE in Frequency Domain for OFDM Systems with Insufficient CP

    Lan YANG  Shixin CHENG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:12
      Page(s):
    4616-4624

    In OFDM systems, employing a cyclic prefix (CP) as the guard interval is a simple way to combat the inter-symbol interference (ISI) and the inter-carrier interference (ICI), however it reduces the transmission efficiency of the system, especially for some channels with a very long delay spread. In this paper, we consider the OFDM system with insufficient CP, much more efficient than conventional OFDM systems. First, we present the system mathematical model and give the ISI and ICI analysis. Then the signal-to-interference power ratio (SIR) performance is presented. To reduce the ISI and ICI due to the insufficient CP, we develop a minimum-mean-square-error decision feedback equalizer (MMSE_DFE). Based on the MMSE criterion, the optimum feedforward and feedback filter coefficients are derived. For time-varying channel, to avoid brute force matrix inversion in conventional schemes, we propose an adaptive LMS based solution to update the filtering coefficients by tracing the channel variation. Since the high complexity of MMSE_DFE, a reduced complexity scheme, ordered successive partial interference cancellation DFE (OSPIC_DFE), is developed. From the performance comparison between the MMSE_DFE and the OSPIC_DFE, we see that the latter is very near to the former. Finally the simulation shows these proposed methods are highly effective in combating ISI and ICI with low complexity.

  • Performance Analysis of MDSS Code Acquisition Using SLS for Optical CDMA Systems

    Anh T. PHAM  Hiroyuki YASHIMA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E88-B No:12
      Page(s):
    4570-4577

    We propose a multiple dwell serial search (MDSS) code acquisition for optical code-division multiple-access (O-CDMA) systems and theoretically analyze its performance. The search/lock strategy (SLS) is used as verification scheme for the multiple dwell detector. The operation of SLS is modeled by finite Markov chain to analyze the performance of the proposed system. Effect of system parameters, such as number of users, threshold and mean photon count per chip, on the performance of the proposed system is investigated. The theoretical result shows that the performance of the proposed system is less sensitive to parameter settings than the conventional single dwell serial search (SDSS) code acquisition system is. In addition, the proposed MDSS code acquisition system offers shorter mean acquisition time than that of conventional SDSS system.

  • Blind Multiuser Detection Based on Power Estimation

    Guanghui XU  Guangrui HU  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E88-B No:12
      Page(s):
    4647-4650

    Although the multiuser detection scheme based on Kalman filtering (K-MUD) proposed by Zhang and Wei, is referred to as a "blind" algorithm, in fact it is not really blind because it is conditioned on perfect knowledge of system parameter, power of the desired user. This paper derives an algorithm to estimate the power of the user of interest, and proposes a completely blind multiuser detection. Computer simulations show that the proposed parameter estimation scheme obtains excellent effect, and that the new detection scheme has nearly the same performance as the K-MUD, there is only slight degradation at very low input signal-to-interference ratios (SIR).

  • Control of Total Transmission on Ferrite Edge-Mode Isolator

    Toshiro KODERA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:12
      Page(s):
    2366-2371

    This paper introduces a new approach to realize a multi-state operation on the microwave isolator using ferrite edge-mode. The voltage control of total transmission on the isolator is realized. The operation is based on the unique property of ferrite edge-mode and the variable resistance of PIN diodes. On the isolator, the frequency response is investigated both experimentally and numerically. The numerical analysis is performed by the FDTD method. Both numerical and experimental results have shown that the transmission between two ports can be totally controlled by the applied voltage for the diodes. The experimental results indicate that the transmission direction can be controlled at 11 GHz, and the isolation ratio can be controlled for more than 30 dB.

  • Absolutely Convergent Expansion of Hankel Functions for Sommerfeld Type Integral

    Bin-Hao JIANG  

     
    LETTER-Electromagnetic Theory

      Vol:
    E88-C No:12
      Page(s):
    2377-2378

    Generalized impedance boundary conditions are employed to simulate the effects of the parallel-stratified media on electromagnetic fields. Sommerfeld type integral contained in Hertz potential is expressed as the sum of two parts: zeroth order Hankel function and an absolutely convergent series expansion of spherical Hankel functions.

  • Node Placement Algorithms in the Case that Routes are Design Variables in Shuffle-Like Multihop Lightwave Networks

    Tokumi YOKOHIRA  Kiyohiko OKAYAMA  

     
    PAPER-Network

      Vol:
    E88-B No:12
      Page(s):
    4578-4587

    The shuffle-like network (SL-Net) is known as a logical topology for WDM-based multihop packet-switched networks. Even if we fix the logical topology to an SL-Net, we can still reposition nodes in the SL-Net by re-tuning wavelengths of transmitters and/or receivers. In conventional node placement algorithms, routes between nodes are assumed to be given. In this paper, we propose two heuristic node placement algorithms for the SL-Net to decrease the average end-to-end packet transmission delay under a given traffic matrix in the case that routes are design variables. The principal idea is to prevent too many traffic flows from overlapping on any link. To attain the idea, in one of the algorithms, a node is selected one by one in a decreasing order of the sums of sending and receiving traffic requirements in nodes, and its placement and routes between the node and all the nodes already placed are simultaneously decided so that the maximum of the amounts of traffic on links at the moment is minimum. In the other algorithm, a node is selected in the same way, and first it is placed so that the average distance between the node and all the nodes already placed is as large as possible, and then routes between the node and all the nodes already placed are decided so that the maximum of the amounts of traffic on links at the moment is minimum. Numerical results for four typical traffic matrices show that either of the proposed algorithms has better performance than conventional algorithms for each matrix, and show that the proposed algorithms, which are based on a jointed optimization approach of node placement and routing, are superior to algorithms which execute node placement and routing as two isolated phases.

  • Method of Bandwidth Dimensioning and Management for Aggregated TCP Flows with Heterogeneous Access Links

    Ryoichi KAWAHARA  Keisuke ISHIBASHI  Tatsuya MORI  Toshihisa OZAWA  Takeo ABE  

     
    PAPER-Internet

      Vol:
    E88-B No:12
      Page(s):
    4605-4615

    We propose a method of dimensioning and managing the bandwidth of a link on which flows with heterogeneous access-link bandwidths are aggregated. We use a processor-sharing queue model to develop a formula approximating the mean TCP file-transfer time of flows on an access link in such a situation. This only requires the bandwidth of the access link carrying the flows on which we are focusing and the bandwidth and utilization of the aggregation link, each of which is easy to set or measure. We then extend the approximation to handle various factors affecting actual TCP behavior, such as the round-trip time and restrictions other than the access-link bandwidth and the congestion of the aggregation link. To do this, we define the virtual access-link bandwidth as the file-transfer speed of a flow when the utilization of the aggregation link is negligibly small. We apply the virtual access-link bandwidth in our approximation to estimate the TCP performance of a flow with increasing utilization of the aggregation link. This method of estimation is used as the basis for a method of dimensioning the bandwidth of a link such that the TCP performance is maintained, and for a method of managing the bandwidth by comparing the measured link utilization with an estimated threshold indicating degradation of the TCP performance. The accuracy of the estimates produced by our method is estimated through both computer simulation and actual measurement.

  • Automatically-Controlled C-Band Wavelength Conversion with Constant Output Power Based on Four-Wave Mixing in SOA's

    Koji OTSUBO  Tomoyuki AKIYAMA  Haruhiko KUWATSUKA  Nobuaki HATORI  Hiroji EBE  Mitsuru SUGAWARA  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E88-C No:12
      Page(s):
    2358-2365

    We demonstrate the C-band wavelength conversion unit having functions of automatic wavelength recognition, power equalization, and elimination of original signal and pumping light for the first time, which is based on four-wave mixing (FWM) in semiconductor optical amplifiers (SOA's). The constructed unit automatically detects signal wavelength, sweeps wavelength of a pumping light, and adjusts center wavelengths of band pass filters and gain values of erbium-doped fiber amplifiers (EDFA's), in order to convert the wavelength of the signal to the arbitrary wavelength we set, and eliminate the original signal and pumping light after conversion. Amplification of the signal, pumping, and wavelength-converted lights compensates the detuning dependence of conversion efficiency and its asymmetry in the quantum-well (QW) SOA, to keep the power of the wavelength-converted light constant within the whole C-band region. The switching time of wavelength conversion by the unit is about a second, which is dominated by mechanical movement of the tunable filters. Wavelength-converted 2.5 and 10 Gb/s NRZ signals show clear eye-openings when the detuning is positive (ωp > ωs), and a 2-ps pulse train is also successfully wavelength-converted. To overcome the problem of the asymmetric conversion efficiency in the QW-SOA, we adopted quantum-dot (QD) SOA's. Although the 1.5 µm QD-SOA still shows its asymmetry, which will be improved by optimization of quantum dot structure, wavelength conversion of a 160 Gb/s RZ signal is demonstrated by the QD-SOA's. More improvement of the performance of the wavelength conversion unit should be possible by making switching time faster and installing the optimized QD-SOA's.

2621-2640hit(4624hit)