The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

10161-10180hit(21534hit)

  • Quantization Parameter Refinement in H.264 through ρ-Domain Rate Model

    Yutao DONG  Xiangzhong FANG  Jing YANG  

     
    LETTER-Speech and Hearing

      Vol:
    E91-D No:6
      Page(s):
    1834-1837

    This letter proposes a new algorithm of refining the quantization parameter in H.264 real-time encoding. In the H.264 encoding, the quantization parameter computed according to the quadratic rate model is not accurate in meeting the target bit rate. In order to make the actual encoded bit rate closer to the target bit rate, ρ-domain rate model is introduced in our proposed quantization parameter refinement algorithm. Simulation results show that the proposed algorithm achieves obvious gain in PSNR and has stabler encoded bit rate compared to Jiang's algorithm.

  • Specific and Class Object Recognition for Service Robots through Autonomous and Interactive Methods

    Al MANSUR  Yoshinori KUNO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E91-D No:6
      Page(s):
    1793-1803

    Service robots need to be able to recognize and identify objects located within complex backgrounds. Since no single method may work in every situation, several methods need to be combined and robots have to select the appropriate one automatically. In this paper we propose a scheme to classify situations depending on the characteristics of the object of interest and user demand. We classify situations into four groups and employ different techniques for each. We use Scale-invariant feature transform (SIFT), Kernel Principal Components Analysis (KPCA) in conjunction with Support Vector Machine (SVM) using intensity, color, and Gabor features for five object categories. We show that the use of appropriate features is important for the use of KPCA and SVM based techniques on different kinds of objects. Through experiments we show that by using our categorization scheme a service robot can select an appropriate feature and method, and considerably improve its recognition performance. Yet, recognition is not perfect. Thus, we propose to combine the autonomous method with an interactive method that allows the robot to recognize the user request for a specific object and class when the robot fails to recognize the object. We also propose an interactive way to update the object model that is used to recognize an object upon failure in conjunction with the user's feedback.

  • Sound Reproduction System Robust against Environmental Variation by Switching Control Band Range

    Yosuke TATEKURA  Takeshi WATANABE  

     
    LETTER

      Vol:
    E91-A No:6
      Page(s):
    1362-1366

    A robust multichannel sound reproduction system that utilizes the relationship between the width of the actual control area and the control frequency of the control points is proposed. The reproduction accuracy of a conventional sound reproduction system is reduced by room environment variations when fixed inverse filter coefficients are used. This tendency becomes more significant when control points are arranged more closely. To resolve this problem, the frequency control band at every control point is switched to avoid degrading the reproduced sound in low frequencies, so the pass band range of the control points at both ears is only high-range. That of the other control points is the entire control range. Numerical simulation with real environmental data showed that improvement of the reproduction accuracy is about 6.1 dB on average, even with a temperature fluctuation of 5C as an environmental variation in the listening room.

  • The Ridged Cross-Junction Multiple-Way Power Divider for Small Blockage and Symmetrical Slot Arrangement in the Center Feed Single-Layer Slotted Waveguide Array

    Yasuhiro TSUNEMITSU  Goro YOSHIDA  Naohisa GOTO  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas

      Vol:
    E91-B No:6
      Page(s):
    1767-1772

    The center-feed in a single-layer slotted waveguide array[1]-[3] is one of the key components in polarization division duplex (PDD) wireless systems. Two center-feed arrays with orthogonal polarization and boresight beams are orthogonally arranged side-by-side for transmission and reception, simultaneously. Each antenna has extremely high XPD (almost 50 dB in measurement) and a very high isolation (over 80 dB in measurement) between two arrays is observed provided the symmetry of slot arrangement is preserved [4]. Unfortunately, the area blocked by the center feed causes high sidelobe levels. This paper proposes the ridged cross-junction multiple-way power divider for realizing blockage reduction and symmetrical slot arrangement at the same time.

  • A Construction of Lossy Source Code Using LDPC Matrices

    Shigeki MIYAKE  Jun MURAMATSU  

     
    PAPER-Information Theory

      Vol:
    E91-A No:6
      Page(s):
    1488-1501

    Research into applying LDPC code theory, which is used for channel coding, to source coding has received a lot of attention in several research fields such as distributed source coding. In this paper, a source coding problem with a fidelity criterion is considered. Matsunaga et al. and Martinian et al. constructed a lossy code under the conditions of a binary alphabet, a uniform distribution, and a Hamming measure of fidelity criterion. We extend their results and construct a lossy code under the extended conditions of a binary alphabet, a distribution that is not necessarily uniform, and a fidelity measure that is bounded and additive and show that the code can achieve the optimal rate, rate-distortion function. By applying a formula for the random walk on lattice to the analysis of LDPC matrices on Zq, where q is a prime number, we show that results similar to those for the binary alphabet condition hold for Zq, the multiple alphabet condition.

  • Compensation Effect of Quasi-Inverse Filter (QIF) on Frequency Characteristic Distortion in Wideband Systems

    Mitoshi FUJIMOTO  Haiyan ZHAO  Toshikazu HORI  

     
    PAPER-Antennas

      Vol:
    E91-B No:6
      Page(s):
    1783-1790

    High-speed wireless communication systems have attracted much attention in recent years. To achieve a high-speed wireless communication system that utilizes an ultra-wide-frequency band, a broadband antenna is required. However, it is difficult to obtain an antenna that has uniform characteristics in a broad frequency band. Moreover, propagation characteristics are distorted in a multi-path environment. Thus, the communication quality tends to degrade due to the distortion in the frequency characteristics of the wideband communication system. This paper proposes a quasi-inverse filter (QIF) to improve the compensation effect for the transmitter antenna. Furthermore, we propose a method that employs the newly developed QIF that compensates for frequency characteristic distortion. We evaluate different configurations for the compensation system employing a pre-filter and post-filter in the wideband communication system. The effectiveness of the QIF in the case of severe distortion is verified by computer simulation. The proposed method is applied to a disc monopole antenna as a concrete example of a broadband antenna, and the compensation effect for the antenna is indicated.

  • A Study on Site Diversity Techniques Related to Rain Area Motion Using Ku-Band Satellite Signals

    Yasuyuki MAEKAWA  Takayuki NAKATANI  Yoshiaki SHIBAGAKI  Takeshi HATSUDA  

     
    PAPER-Propagation

      Vol:
    E91-B No:6
      Page(s):
    1812-1818

    Directions and speeds of the motion of rain areas are estimated for each type of rain fronts, using time differences detected in the rain attenuation of the Ku-band satellite radio wave signals that have been measured at Osaka Electro-Communication University (OECU) in Neyagawa, Osaka, Research Institute of Sustainable Humanosphere (RISH) in Uji, Kyoto, and MU Observatory (MU) of Kyoto University in Shigaraki, Shiga, for the past five years since September 2002. These directions and speeds are shown to agree well with those directly obtained from the motion of rain fronts in the weather charts published by Japan Meteorological Agency. The rain area motion is found to have characteristic directions according to each rain type, such as cold and warm fronts or typhoon. A numerical estimate of the effects of site diversity techniques indicates that between two sites among the three locations (OECU, RISH, MU) separated by 20-50 km, the joint cumulative time percentages of rain attenuation become lower as the two sites are aligned along the directions of rain area motion. In such a case, compared with the ITU-R recommendations, the distance required between the two sites may be, on an average, reduced down to about 60-70% of the conventional predictions.

  • A New Blind 2D-RAKE Receiver Based on CMA Criteria for Spread Spectrum Systems Suitable for Software Defined Radio Architecture

    Kei TAKAYAMA  Yukihiro KAMIYA  Takeo FUJII  Yasuo SUZUKI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:6
      Page(s):
    1906-1913

    Spread Spectrum (SS) has been widely used for various wireless systems such as cellular systems, wireless local area network (LAN) and so on. Using multiple antennas at the receiver, two-dimensional (2D) RAKE is realized over the time- and the space-domain. However, it should be noted that the 2D-RAKE receiver must detect the bit timing prior to the RAKE combining. In case of deep fading, it is often difficult to detect it due to low signal-to-noise power ratio (SNR). To solve this problem, we propose a new blind 2D-RAKE receiver based on the constant modulus algorithm (CMA). Since it does not need a priori bit timing detection, it is possible to compensate frequency selective fading even in very low SNR environments. The proposed method is particularly suitable for the software defined radio (SDR) architecture. The performance of the proposed method is investigated through computer simulations.

  • Separation between Sound and Light Enhances Audio-Visual Prior Entry Effect

    Yuki HONGOH  Shinichi KITA  Yoshiharu SOETA  

     
    PAPER-Human Information Processing

      Vol:
    E91-D No:6
      Page(s):
    1641-1648

    We examined how spatial disparity between the auditory and visual stimuli modulated the audio-visual (A-V) prior entry effect. Spatial and temporal proximity of multisensory stimuli are crucial factors for multisensory perception in most cases (e.g. [1],[2]). However our previous research[3],[4] suggested that this well-accepted hypothesis was not applicable to the A-V prior entry effect. In order to examine the effect of the spatial disparity on the A-V prior entry effect, six loudspeakers and two light emitting diodes (LEDs) were used as stimuli. The loudspeakers were located at 10, 25, and 90 degrees from the midline of the participants to both right and left sides. A preceding sound was presented from one of these six loudspeakers. After the preceding sound, two visual targets were presented successively at a short interval and participants judged which visual target was presented first. Two colour changeable ('red' or 'green') LEDs were used for the visual targets and participants judged the order of visual targets by their colour not by their side in order to avoid the response bias as much as possible. The visual targets were situated at 10 degrees or 25 degrees from the participants' midline to both right and left in the Experiment 1. Results showed a biased judgment that the visual target at the sound presented side was presented first. The amplitude of the A-V prior entry effect was greater when the preceding sound source was more apart from the midline of participants. This effect of spatial separation indicated that the clarity of either right or left side of the preceding sound enhanced the amplitude of the A-V prior entry effect (Experiment 2). These results challenge the belief that the spatial proximity of multisensory stimuli is a crucial factor for multisensory perception.

  • Self-Organizing Map with False-Neighbor Degree between Neurons for Effective Self-Organization

    Haruna MATSUSHITA  Yoshifumi NISHIO  

     
    PAPER-Nonlinear Problems

      Vol:
    E91-A No:6
      Page(s):
    1463-1469

    In the real world, it is not always true that neighboring houses are physically adjacent or close to each other. in other words, "neighbors" are not always "true neighbors." In this study, we propose a new Self-Organizing Map (SOM) algorithm, SOM with False-Neighbor degree between neurons (called FN-SOM). The behavior of FN-SOM is investigated with learning for various input data. We confirm that FN-SOM can obtain a more effective map reflecting the distribution state of input data than the conventional SOM and Growing Grid.

  • On the Performance of MIMO Macrodiversity Transmission with Limited Feedback

    Erlin ZENG  Zhimeng ZHONG  Shihua ZHU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:6
      Page(s):
    2033-2036

    In this letter, we study the performance of the multiple-input multiple-output macrodiversity transmission with limited feedback. We modify the model of the quantized channel by Jindal [9] such that the phase ambiguity in the vector quantization procedure can be characterized. Using the modified model, we show that the conventional limited feedback methods cannot obtain the macrodiversity gain even with asymptotically large codebook size, and that the macrodiversity gain can be attained by adding only one bit of phase feedback.

  • Artificial Spiking Neurons and Analog-to-Digital-to-Analog Conversion

    Hiroyuki TORIKAI  Aya TANAKA  Toshimichi SAITO  

     
    PAPER-Nonlinear Problems

      Vol:
    E91-A No:6
      Page(s):
    1455-1462

    This paper studies encoding/decoding function of artificial spiking neurons. First, we investigate basic characteristics of spike-trains of the neurons and fix parameter value that can minimize variation of spike-train length for initial value. Second we consider analog-to-digital encoding based upon spike-interval modulation that is suitable for simple and stable signal detection. Third we present a digital-to-analog decoder in which digital input is applied to switch the base signal of the spiking neuron. The system dynamics can be simplified into simple switched dynamical systems and precise analysis is possible. A simple circuit model is also presented.

  • Path Loss Prediction Formula in Urban Area for the Fourth-Generation Mobile Communication Systems

    Koshiro KITAO  Shinichi ICHITSUBO  

     
    PAPER-Antennas and Propagation

      Vol:
    E91-B No:6
      Page(s):
    1999-2009

    A site-general type prediction formula is created based on the measurement results in an urban area in Japan assuming that the prediction frequency range required for Fourth -- Generation (4G) Mobile Communication Systems is from 3 to 6 GHz, the distance range is 0.1 to 3 km, and the base station (BS) height range is from 10 to 100 m. Based on the measurement results, the path loss (dB) is found to be proportional to the logarithm of the distance (m), the logarithm of the BS height (m), and the logarithm of the frequency (GHz). Furthermore, we examine the extension of existing formulae such as the Okumura -- Hata, Walfisch -- Ikegami, and Sakagami formulae for 4G systems and propose a prediction formula based on the Extended Sakagami formula.

  • Calculating Inverse Filters for Speech Dereverberation

    Masato MIYOSHI  Marc DELCROIX  Keisuke KINOSHITA  

     
    INVITED PAPER

      Vol:
    E91-A No:6
      Page(s):
    1303-1309

    Speech dereverberation is one of the most difficult tasks in acoustic signal processing. Of the various problems involved in this task, this paper highlights "over-whitening," which flattens the characteristics of recovered speech. This distortion sometimes happens when inverse filters are directly calculated from microphone signals. This paper reviews two studies related to this problem. The first study shows the possibility of compensating for such over-whitening to achieve precise speech-dereverberation. The second study presents a new approach for approximating the original speech by removing the effect of late reflections from observed reverberant speech.

  • A Global Stability Analysis of a Class of Nolinear Time-Delay Systems Using Continued Fraction Property

    Joon-Young CHOI  

     
    LETTER-Systems and Control

      Vol:
    E91-A No:5
      Page(s):
    1274-1277

    We consider a class of nonlinear time delay systems with time-varying delays, and achieve a time delay independent sufficient condition for the global asymptotic stability. The sufficient condition is proved by constructing a continued fraction that represents the lower and upper bound variations of the system trajectory along the current of time, and showing that the continued fraction converges to the equilibrium point of the system. The simulation results show the validity of the sufficient condition, and illustrate that the sufficient condition is a close approximation to the unknown necessary and sufficient condition for the global asymptotic stability.

  • Enhanced Characteristics of In0.5Ga0.5As Quantum Dot Infrared Photo Detector with Hydrogen Plasma Treatment

    Sung Ho HWANG  Jin Dong SONG  Won Jun CHOI  Jung Il LEE  

     
    PAPER

      Vol:
    E91-C No:5
      Page(s):
    699-702

    Device characteristics of In0.5Ga0.5As/GaAs quantum dot infrared detector (QDIP) have been enhanced with hydrogen plasma treatment. After the hydrogen (H) plasma treatment, the dark currents were noticeably decreased and photoluminescence (PL) intensity was increased by H-passivation of interfacial traps between quantum dots and GaAs and of non-radiative defect centers caused during QD growths. Photo response, which could not be observed in as-grown QDIP due to large dark currents which obscured the photocurrent signal, was measured successfully after H-treatment due to H-passivation.

  • Multiuser Detection for Asynchronous Multicarrier CDMA Using Particle Swarm Optimization

    Muhammad ZUBAIR  Muhammad A.S. CHOUDHRY  Aqdas NAVEED  Ijaz Mansoor QURESHI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:5
      Page(s):
    1636-1639

    Due to the computational complexity of the optimum maximum likelihood detector (OMD) growing exponentially with the number of users, suboptimum techniques have received significant attention. We have proposed the particle swarm optimization (PSO) for the multiuser detection (MUD) in asynchronous multicarrier code division multiple access (MC-CDMA) system. The performance of PSO based MUD is near optimum, while its computational complexity is far less than OMD. Performance of PSO-MUD has also been shown to be better than that of genetic algorithm based MUD (GA-MUD) at practical SNR.

  • Power Reduction during Scan Testing Based on Multiple Capture Technique

    Lung-Jen LEE  Wang-Dauh TSENG  Rung-Bin LIN  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E91-C No:5
      Page(s):
    798-805

    In this paper, we present a multiple capture approach to reducing the peak power as well as average power consumption during testing. The basic idea behind is to divide a scan chain into two sub-scan chains, and only one sub-scan chain will be enabled at a time during the scan shift or capture operations. We develop a pattern insertion technique to efficiently deal with the capture violation problem during the capture cycle. In order to alleviate the timing cost due to the insertion of redundant patterns, a scan chain partitioning method incorporated with test pattern reordering is developed to reduce the testing time. Experimental results for large ISCAS'89 benchmark circuits show that the proposed approach can efficiently reduce peak and average power with little timing overhead.

  • Efficient Fingercode Classification

    Hong-Wei SUN  Kwok-Yan LAM  Dieter GOLLMANN  Siu-Leung CHUNG  Jian-Bin LI  Jia-Guang SUN  

     
    INVITED PAPER

      Vol:
    E91-D No:5
      Page(s):
    1252-1260

    In this paper, we present an efficient fingerprint classification algorithm which is an essential component in many critical security application systems e.g. systems in the e-government and e-finance domains. Fingerprint identification is one of the most important security requirements in homeland security systems such as personnel screening and anti-money laundering. The problem of fingerprint identification involves searching (matching) the fingerprint of a person against each of the fingerprints of all registered persons. To enhance performance and reliability, a common approach is to reduce the search space by firstly classifying the fingerprints and then performing the search in the respective class. Jain et al. proposed a fingerprint classification algorithm based on a two-stage classifier, which uses a K-nearest neighbor classifier in its first stage. The fingerprint classification algorithm is based on the fingercode representation which is an encoding of fingerprints that has been demonstrated to be an effective fingerprint biometric scheme because of its ability to capture both local and global details in a fingerprint image. We enhance this approach by improving the efficiency of the K-nearest neighbor classifier for fingercode-based fingerprint classification. Our research firstly investigates the various fast search algorithms in vector quantization (VQ) and the potential application in fingerprint classification, and then proposes two efficient algorithms based on the pyramid-based search algorithms in VQ. Experimental results on DB1 of FVC 2004 demonstrate that our algorithms can outperform the full search algorithm and the original pyramid-based search algorithms in terms of computational efficiency without sacrificing accuracy.

  • Frequency-Domain Iterative Parallel Interference Cancellation for Multicode Spread-Spectrum MIMO Multiplexing

    Akinori NAKAJIMA  Deepshikha GARG  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:5
      Page(s):
    1531-1539

    Very high-speed data services are demanded in the next generation wireless systems. However, the available bandwidth is limited. The use of multi-input multi-output (MIMO) multiplexing can increase the transmission rate without bandwidth expansion. For high-speed data transmission, however, the channel becomes severely frequency-selective and the achievable bit error rate (BER) performance degrades. In our previous work, we proposed the joint use of iterative frequency-domain parallel interference cancellation (PIC) and two-dimensional (2D) MMSE-FDE for the non-spread single-carrier (SC) transmission in a frequency-selective fading channel. The joint use of PIC and 2D MMSE-FDE can effectively suppress the inter-path interference (IPI) and the inter-code interference (ICI), resulting from the channel frequency-selectivity, and the interference from other antennas simultaneously. An iterative PIC with 2D MMSE-FDE has a high computational complexity. In this paper, to well suppress the interference from other antennas while reducing the computational complexity, we propose to replace 2D MMSE-FDE by 1D MMSE-FDE except for the initial iteration stage and to use multicode spread-spectrum (SS) transmission instead of the non-spread SC transmission. The BER performance of the proposed scheme in a frequency-selective Rayleigh fading channel is evaluated by computer simulation to show that the proposed scheme can basically match the BER performance of 2D MMSE-FDE with lower complexity.

10161-10180hit(21534hit)