The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

10001-10020hit(21534hit)

  • An Application of Linear Codes to the Problem of Source Coding with Partial Side Information

    Shigeaki KUZUOKA  

     
    PAPER-Information Theory

      Vol:
    E91-A No:8
      Page(s):
    2151-2158

    This paper clarifies the adequacy of the linear channel coding approach for the source coding with partial side information at the decoder. A sufficient condition for an ensemble of linear codes which achieves the Wyner's bound is given. Our result reveals that, by combining a good lossy code, an LDPC code ensemble gives a good code for source coding with partial side information at the decoder.

  • Alternative Transform for Residual Blocks in H.264/AVC

    Sung-Chang LIM  Dae-Yeon KIM  Yung-Lyul LEE  

     
    LETTER-Image

      Vol:
    E91-A No:8
      Page(s):
    2272-2276

    In this paper, an alternative transform based on the correlation of the residual block is proposed for the improvement of the H.264/AVC coding efficiency. A discrete sine transform is used alternately with a discrete cosine transform in order to greatly compact the energy of the signal when the correlation coefficients of the signal are in the range of -0.5 to 0.5. Therefore, the discrete sine transform is suggested to be used in conjunction with the discrete cosine transform in H.264/AVC. The alternative transform selecting the optimal transform between two transforms by using rate-distortion optimization shows a coding gain compared with H.264/AVC. The proposed method achieves a PSNR gain of up to 1.0 dB compared to JM 10.2 at relatively high bitrates.

  • High Resolution DOA Estimation Using Unwrapped Phase Information of MUSIC-Based Noise Subspace

    Koichi ICHIGE  Kazuhiko SAITO  Hiroyuki ARAI  

     
    PAPER

      Vol:
    E91-A No:8
      Page(s):
    1990-1999

    This paper presents a high resolution Direction-Of-Arrival (DOA) estimation method using unwrapped phase information of MUSIC-based noise subspace. Superresolution DOA estimation methods such as MUSIC, Root-MUSIC and ESPRIT methods are paid great attention because of their brilliant properties in estimating DOAs of incident signals. Those methods achieve high accuracy in estimating DOAs in a good propagation environment, but would fail to estimate DOAs in severe environments like low Signal-to-Noise Ratio (SNR), small number of snapshots, or when incident waves are coming from close angles. In MUSIC method, its spectrum is calculated based on the absolute value of the inner product between array response and noise eigenvectors, means that MUSIC employs only the amplitude characteristics and does not use any phase characteristics. Recalling that phase characteristics plays an important role in signal and image processing, we expect that DOA estimation accuracy could be further improved using phase information in addition to MUSIC spectrum. This paper develops a procedure to obtain an accurate spectrum for DOA estimation using unwrapped and differentiated phase information of MUSIC-based noise subspace. Performance of the proposed method is evaluated through computer simulation in comparison with some conventional estimation methods.

  • On the Stopping Distance and Stopping Redundancy of Finite Geometry LDPC Codes

    Hai-yang LIU  Xiao-yan LIN  Lian-rong MA  Jie CHEN  

     
    PAPER-Coding Theory

      Vol:
    E91-A No:8
      Page(s):
    2159-2166

    The stopping distance and stopping redundancy of a linear code are important concepts in the analysis of the performance and complexity of the code under iterative decoding on a binary erasure channel. In this paper, we studied the stopping distance and stopping redundancy of Finite Geometry LDPC (FG-LDPC) codes, and derived an upper bound of the stopping redundancy of FG-LDPC codes. It is shown from the bound that the stopping redundancy of the codes is less than the code length. Therefore, FG-LDPC codes give a good trade-off between the performance and complexity and hence are a very good choice for practical applications.

  • On Generalized Feistel Structures Using the Diffusion Switching Mechanism

    Taizo SHIRAI  Kiyomichi ARAKI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E91-A No:8
      Page(s):
    2120-2129

    To design secure blockciphers, estimating immunity against differential attack and linear attack is essential. Recently, Diffusion Switching Mechanism (DSM) is proposed as a design framework to enhance the immunity of Feistel structure against differential attack and linear attack. In this paper, we give novel results on the effect of DSM on three generalized Feistel structures, i.e. Type-I, Type-II and Nyberg's structures. We first show a method for roughly estimating lower bounds of a number of active S-boxes in Type-I and Type-II structures using DSM. Then we propose an improved search algorithm to find lower bounds for generalized structures efficiently. Experimental results obtained by the improved algorithm show that DSM raises lower bounds for all of the structures, and also show that Nyberg's structure has the slowest diffusion effect among them when SP-type F-functions are used.

  • Accurate Object Recognition Using Orientation Sensor with Refinement on the Lie Group of Spatial Rigid Motions

    Loic MERCKEL  Toyoaki NISHIDA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E91-D No:8
      Page(s):
    2179-2188

    In this paper, we introduce a method for recognizing a subject complex object in real world environment. We use a three dimensional model described by line segments of the object and the data provided by a three-axis orientation sensor attached to the video camera. We assume that existing methods for finding line features in the image allow at least one model line segment to be detected as a single continuous segment. The method consists of two main steps: generation of pose hypotheses and then evaluation of each pose in order to select the most appropriate one. The first stage is three-fold: model visibility, line matching and pose estimation; the second stage aims to rank the poses by evaluating the similarity between the projected model lines and the image lines. Furthermore, we propose an additional step that consists of refining the best candidate pose by using the Lie group formalism of spatial rigid motions. Such a formalism provides an efficient local parameterization of the set of rigid rotation via the exponential map. A set of experiments demonstrating the robustness of this approach is presented.

  • Detection of Leak Location in a Pipeline by Acoustic Signal

    Umut YUNUS  Masaru TSUNASAKI  Yiwei HE  Masanobu Kominami   Katsumi YAMASHITA  

     
    PAPER-Engineering Acoustics

      Vol:
    E91-A No:8
      Page(s):
    2053-2061

    Gas or water leaks in pipes that are buried under ground or that are situated in the walls of buildings may occur due to aging or unpredictable accidents, such as earthquakes. Therefore, the detection of leaks in pipes is an important task and has been investigated extensively. In the present paper, we propose a novel leak detection method by means of acoustic wave. We inject an acoustic chirp signal into a target pipeline and then estimate the leak location from the delay time of the compressed pulse by passing the reflected signal through a correlator. In order to distinguish a leak reflection in a complicated pipeline arrangement, the reflection characteristics of leaks are carefully discussed by numerical simulations and experiments. There is a remarkable difference in the reflection characteristics between the leak and other types of discontinuity, and the property can be utilized to distinguish the leak reflection. The experimental results show that, even in a complicated pipe arrangement including bends and branches, the proposed approach can successfully implement the leak detection. Furthermore, the proposed approach has low cost and is easy to implement because only a personal computer and some commonly equipment are required.

  • Logic and Layout Aware Level Converter Optimization for Multiple Supply Voltage

    Liangpeng GUO  Yici CAI  Qiang ZHOU  Xianlong HONG  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E91-A No:8
      Page(s):
    2084-2090

    Multiple supply voltage (MSV) is an effective scheme to achieve low power. Recent works in MSV are based on physical level and aim at reducing physical overheads, but all of them do not consider level converter, which is one of the most important issues in dual-vdd design. In this work, a logic and layout aware methodology and related algorithms combining voltage assignment and placement are proposed to minimize the number of level converters and to implement voltage islands with minimal physical overheads. Experimental results show that our approach uses much fewer level converters (reduced by 83.23% on average) and improves the power savings by 16% on average compared to the previous approach [1]. Furthermore, the methodology is able to produce feasible placement with a small impact to traditional placement goals.

  • Analysis of Simple Single/Parallel Switched Dynamical Systems Based on Two Switching Strategies

    Yuki ISHIKAWA  Daisuke KIMURA  Yasuhide ISHIGE  Toshimichi SAITO  

     
    PAPER-Nonlinear Problems

      Vol:
    E91-A No:8
      Page(s):
    2076-2083

    This paper studies two kinds of simple switched dynamical systems with piecewise constant characteristics. The first one is based on the single buck converter whose periodic/chaotic dynamics are analyzed precisely using the piecewise linear phase map. The second one is based on a paralleled system of the buck converters for lower voltages with higher current capabilities. Referring to the results of the single system, it is clarified that stable multi-phase synchronization is always possible by the proper use of the switching strategies and adjustment of the clock period. Presenting a simple test circuit, typical operations are confirmed experimentally.

  • An Efficient Adaptive Minor Subspace Extraction Using Exact Nested Orthogonal Complement Structure

    Masaki MISONO  Isao YAMADA  

     
    PAPER

      Vol:
    E91-A No:8
      Page(s):
    1867-1874

    This paper presents a new adaptive minor subspace extraction algorithm based on an idea of Peng and Yi ('07) for approximating the single minor eigenvector of a covariance matrix. By utilizing the idea inductively in the nested orthogonal complement subspaces, the proposed algorithm succeeds to relax the numerical sensitivity which has been annoying conventional adaptive minor subspace extraction algorithms for example, Oja algorithm ('82) and its stabilized version: O-Oja algorithm ('02). Simulation results demonstrate that the proposed algorithm realizes more stable convergence than O-Oja algorithm.

  • Combined Self-Test of Analog Portion and ADCs in Integrated Mixed-Signal Circuits

    Geng HU  Hong WANG  Shiyuan YANG  

     
    PAPER-Dependable Computing

      Vol:
    E91-D No:8
      Page(s):
    2134-2140

    Testing is a critical stage in integrated circuits production in order to guarantee reliability. The complexity and high integration level of mixed-signal ICs has put forward new challenges to circuit testing. This paper describes an oscillation-based combined self-test strategy for the analog portion and analog-to-digital converters (ADCs) in integrated mixed-signal circuits. In test mode, the analog portion under test is reconfigured into an oscillator, generating periodic signals as the test stimulus of ADC. By analyzing the A/D conversion results, a histogram test of ADC can be performed, and the oscillation frequency as well as amplitude can be checked, and in this way the oscillation test of the analog portion is realized simultaneously. For an analog benchmark circuit combined with an ADC, triangle oscillation and sinusoid oscillation schemes are both given to test their faults. Experimental results show that fault coverage of the analog portion is 92.2% and 94.3% in the two schemes respectively, and faults in the ADC can also be tested.

  • Content-Adaptive Robust Image Watermarking with Posterior HMM-Based Detector

    Chuntao WANG  Jiangqun NI  Rongyue ZHANG  Goo-Rak KWON  Sung-Jea KO  

     
    PAPER

      Vol:
    E91-A No:8
      Page(s):
    1953-1960

    Robustness and invisibility are two contrary constraints for robust invisible watermarking. Instead of the conventional strategy with human visual system (HVS) model, this paper presents a content-adaptive approach to further optimize the constraint between them. To reach this target, the entropy-based and integrated HVS (IHVS) based measures are constructed so as to adaptively choose the suitable components for watermark insertion and detection. Such a kind of scheme potentially gives rise to synchronization problem between the encoder and decoder under the framework of blind watermarking, which is then solved by incorporating the repeat-accumulate (RA) code with erasure and error correction. Moreover, a new hidden Markov model (HMM) based detector in wavelet domain is introduced to reduce the computation complexity and is further developed into a posterior one to avoid the transmission of HMM parameters with only a little sacrifice of detection performance. Experimental results show that the proposed algorithm can obtain considerable improvement in robustness performance with the same distortion as the traditional one.

  • NoC-Compatible Wrapper Design and Optimization under Channel-Bandwidth and Test-Time Constraints

    Fawnizu Azmadi HUSSIN  Tomokazu YONEDA  Hideo FUJIWARA  

     
    PAPER-Dependable Computing

      Vol:
    E91-D No:7
      Page(s):
    2008-2017

    The IEEE 1500 standard wrapper requires that its inputs and outputs be interfaced directly to the chip's primary inputs and outputs for controllability and observability. This is typically achieved by providing a dedicated Test Access Mechanism (TAM) between the wrapper and the primary inputs and outputs. However, when reusing the embedded Network-on-Chip (NoC) interconnect instead of the dedicated TAM, the standard wrapper cannot be used as is because of the packet-based transfer mechanism and other functional requirements by the NoC. In this paper, we describe two NoC-compatible wrappers, which overcome these limitations of the 1500 wrapper. The wrappers (Type 1 and Type 2) complement each other to optimize NoC bandwidth utilization while minimizing the area overhead. The Type 2 wrapper uses larger area overhead to increase bandwidth efficiency, while Type 1 takes advantage of some special configurations which may not require a complex and high-cost wrapper. Two wrapper optimization algorithms are applied to both wrapper designs under channel-bandwidth and test-time constraints, resulting in very little or no increase in the test application time compared to conventional dedicated TAM approaches.

  • Fuzzy Adaptive Partitioning Method for the Statistical Filtering

    Sang Ryul KIM  Hae Young LEE  Tae Ho CHO  

     
    LETTER-Networks

      Vol:
    E91-D No:7
      Page(s):
    2065-2067

    This paper presents a fuzzy partitioning method that adaptively divides a global key pool into multiple partitions by a fuzzy logic in the statistical filtering-based sensor networks. Compared to the original statistical filtering scheme, the proposed method is more resilient against node compromise.

  • Adaptively Combining Local with Global Information for Natural Scenes Categorization

    Shuoyan LIU  De XU  Xu YANG  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E91-D No:7
      Page(s):
    2087-2090

    This paper proposes the Extended Bag-of-Visterms (EBOV) to represent semantic scenes. In previous methods, most representations are bag-of-visterms (BOV), where visterms referred to the quantized local texture information. Our new representation is built by introducing global texture information to extend standard bag-of-visterms. In particular we apply the adaptive weight to fuse the local and global information together in order to provide a better visterm representation. Given these representations, scene classification can be performed by pLSA (probabilistic Latent Semantic Analysis) model. The experiment results show that the appropriate use of global information improves the performance of scene classification, as compared with BOV representation that only takes the local information into account.

  • Multiple-Antenna Receiving and Frequency Domain Equalization in Transmitted-Reference UWB Systems

    Xuewen LIAO  Shihua ZHU  Erlin ZENG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:7
      Page(s):
    2405-2408

    A multiple-antenna receiving and combining scheme is proposed for high-data-rate transmitted-reference (TR) Ultra-Wideband (UWB) systems. The nonlinearity of the inter-symbol interference (ISI) model is alleviated via simple antenna combining. Under the simplified ISI model, frequency domain equalization (FDE) is adopted and greatly reduces the complexity of the equalizer. A simple estimation algorithm for the simplified ISI model is presented. Simulation results demonstrate that compared to the single receive antenna scheme, the proposed method can obtain a significant diversity gain and eliminate the BER floor effect. Moreover, compared to the complex second-order time domain equalizer, FDE showed better performance robustness in the case of imperfect model estimation.

  • Investigation on Current Collapse of AlGaN/GaN HFET by Gate Bias Stress

    Jin-Ping AO  Yuya YAMAOKA  Masaya OKADA  Cheng-Yu HU  Yasuo OHNO  

     
    PAPER-Nitride-based Devices

      Vol:
    E91-C No:7
      Page(s):
    1004-1008

    The mechanism of current collapse of AlGaN/GaN heterojunction field-effect transistors (HFETs) was investigated by gate bias stress with and without illumination. It is clarified that there are two positions where negative charges accumulate, at the gate edge and in the bulk epi-layer. In the gate-edge mode, the charge comes either through the passivation film or the AlGaN layer, depending on the resistance of the films. Reduction of leakage current in the passivation film will be important to suppress the surface-related collapse.

  • Low Leakage Current ITO Schottky Electrodes for AlGaN/GaN HEMTs

    Keita MATSUDA  Takeshi KAWASAKI  Ken NAKATA  Takeshi IGARASHI  Seiji YAEGASSI  

     
    PAPER-GaN Process Technology

      Vol:
    E91-C No:7
      Page(s):
    1015-1019

    To reduce the gate leakage current of AlGaN/GaN HEMTs, we selected ITO/Ni/Au for Schottky electrodes and Schottky characteristics were compared with those of Ni/Au electrodes. ITO/Ni/Au and Ni/Au electrodes were deposited by vacuum evaporation and annealed at 350 in nitrogen atmosphere. From the I-V evaluation results of ITO/Ni/Au electrodes, forward and reverse leakage currents were reduced. Schottky characteristics of ITO/Ni/Au electrodes were also improved compared to these of Ni/Au electrodes. In addition, substantial decrease of leakage currents was confirmed after the annealing of HEMTs with ITO/Ni/Au electrodes. This may be explained that ITO/AlGaN interface state became lower by the annealing. By the temperature dependence of I-V curves, clear dependence was confirmed for the gates with ITO/Ni/Au electrodes. On the other hand, small dependence was observed for those with Ni/Au electrodes. From these results, tunnel leakage currents were dominant for the gates with Ni/Au electrode. Thermal emission current was dominant for the gates with ITO/Ni/Au electrode. The larger temperature dependence was caused that ITO/AlGaN interface states were smaller than those for Ni/Au electrode. It was suggested that suppressed AlGaN Schottky barrier thinning was caused by the surface defect donors, then tunneling leakage currents were decreased. We evaluated HEMT characteristics with ITO/Ni/Au electrode and Ni/Au electrode. Id max and Gm max were similar characteristics, but Vth with ITO/Ni/Au electrode was shifted +0.4 V than that with Ni/Au electrode due to the higher Schottky barrier. It was confirmed to have a good pinch-off currents and low gate leakage currents by ITO/Ni/Au electrodes.

  • High-Performance 76-GHz Planar Gunn VCO

    Yoshimichi FUKASAWA  Kiyoshi KAWAGUCHI  Takashi YOSHIDA  Takahiro SUGIYAMA  Atsushi NAKAGAWA  

     
    PAPER-GaAs- and InP-Based Devices

      Vol:
    E91-C No:7
      Page(s):
    1098-1103

    A 76-GHz Gunn voltage-controlled oscillator (VCO) with a high output power and a wide tuning-frequency range was fabricated by optimizing VCO circuits and using laser micromachining. The tuning-frequency range of the fabricated Gunn VCO was more than two times higher than that attained in our previous experiments by optimizing VCO circuits. The VCO attained a tuning-frequency range of 493 MHz, output power variation of 1.0 dB, and tuning-frequency linearity of 6.1% over a tuning-voltage range from 0 to 10 V. Its power consumption was 2.0 W at operation voltage of 3.6 V. And it measured output power was 13.3 dBm with DC-RF conversion efficiency of 1.0% at 76.5 GHz. Moreover, under fundamental-mode operation, it achieved low phase noise of -107.8 dBc/Hz at an offset frequency of 1 MHz. Since laser micromachining was used in fabricating the Gunn VCO, the reproducibility of its RF performance was improved.

  • Robust Small-Object Detection for Outdoor Wide-Area Surveillance

    Daisuke ABE  Eigo SEGAWA  Osafumi NAKAYAMA  Morito SHIOHARA  Shigeru SASAKI  Nobuyuki SUGANO  Hajime KANNO  

     
    PAPER

      Vol:
    E91-D No:7
      Page(s):
    1922-1928

    In this paper, we present a robust small-object detection method, which we call "Frequency Pattern Emphasis Subtraction (FPES)", for wide-area surveillance such as that of harbors, rivers, and plant premises. For achieving robust detection under changes in environmental conditions, such as illuminance level, weather, and camera vibration, our method distinguishes target objects from background and noise based on the differences in frequency components between them. The evaluation results demonstrate that our method detected more than 95% of target objects in the images of large surveillance areas ranging from 30-75 meters at their center.

10001-10020hit(21534hit)