The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

20181-20200hit(22683hit)

  • Reshufflable and Laziness Tolerant Mental Card Game Protocol

    Kaoru KUROSAWA  Yutaka KATAYAMA  Wakaha OGATA  

     
    PAPER

      Vol:
    E80-A No:1
      Page(s):
    72-78

    This paper presents a reshufflable and laziness tolerant mental card game protocol. First, our protocol can reshuffle any subset of cards. For example, some opened cards and some face down cards can be shuffled together. Next, we consider two types of honest players, currently active and currently nonactive. A player is currently nonactive if he dropped out the game or he declared "pass" and has not declared "rejoin" yet. In the proposed protocol, if more than half of the players are currently active, they can play the game. In this case, the privacy of the currently nonactive players are kept secret.

  • On the Power of Self-Testers and Self-Correctors

    Hiroyoshi MORI  Toshiya ITOH  

     
    PAPER

      Vol:
    E80-A No:1
      Page(s):
    98-106

    Checkers, self-testers, and self-correctors for a function f are powerful tools in designing programs that compute f. However, the relationships among them have not been known well. In this paper, we first show that (1) if oneway permutations exist, then there exists a language L that has a checker but does not have a self-corrector. We then introduce a novel notion of "self-improvers" that trans form a faulty program into a less faulty program, and show that (2) if a function f has a self-tester/corrector pair, then f has a self-improver. As the applications of self-improvers, we finally show that (3) if a function f has a self-tester/corrector pair, then f has a flexible self-tester and (4) if a function f has a self-tester/corrector pair, then f has self-improver that transforms a faulty program into an alomost correct program.

  • Thickness Controls Spatial Cooperation of Calcium-Activated Dynamics in Neuronal Dendrite System

    Norihiro KATAYAMA  Mitsuyuki NAKAO  Yoshinari MIZUTANI  Mitsuaki YAMAMOTO  

     
    PAPER-Neural Networks

      Vol:
    E80-A No:1
      Page(s):
    197-205

    So far, neuronal dendrites have been characterized as electrically passive cables. However, recent physiological findings have revealed complex dynamics due to active conductances distributed over dendrites. In particular, the voltage-gated calcium and calcium-activated conductances are essential for producing diverse neuronal dynamics and synaptic plasticity. In this paper, we investigate the functional significance of the dendritic calcium-activated dynamics by computer simulations. First, the dendritic calcium-activated responses are modeled in a discrete compartmental form based on the physiological findings. Second, the basic stimulus-response characteristics of the single compartment dendrite model are investigated. The model is shown to reproduce the neuronal responses qualitatively. Third, the spatio-temporal dynamics of the dendrite shafts are modeled by longitudinally connecting 10 single compartments with coupling constants which are responsible for the dendrite thickness. The thick dendrite models, corresponding to proximal dendrites, respond in a spatially cooperative manner to a localized constant or periodic current stimulation. In contrast, the highly activated compartments are forced to be localized in the neighborhood of the stimulation-site in the fine dendrite models corresponding to distal dendrites. These results suggest that dendritic activities are spatially cooperated in a site-dependent manner.

  • State-Space Approach to Roundoff Error Analysis of Fractal Image Coding

    Choong Ho LEE  Masayuki KAWAMATA  Tatsuo HIGUCHI  

     
    PAPER-Digital Signal Processing

      Vol:
    E80-A No:1
      Page(s):
    159-165

    Roundoff error due to iterative computation with finite wordlength degrades the quality of decoded images in fractal image coding that employs a deterministic iterated function system. This paper presents a state-space approach to roundoff error analysis of fractal image coding for grey-scale images. The output noise variance matrix and the noise matrix are derived for the measures of error and the output noise variance is newly defined as the pixel mean of diagonal elements of the output noise matrix. A quantitative comparison of experimental roundoff error with analytical result is made for the output noise variance. The result shows that our analysis method is valid for the fractal image coding. Our analysis method is useful to design a real-time and low-cost decoding hardware with finite wordlength for fractal image coding.

  • Stability Analysis of Exact Model Matching Control for Finite Volterra Series Systems

    Osamu YAMANAKA  Hiromitsu OHMORI  Akira SANO  

     
    PAPER-Systems and Control

      Vol:
    E80-A No:1
      Page(s):
    166-175

    For finite Volterra series systems, this paper investigates the stability of the exact model matching (EMM) control we have already presented. First, in order to analyze the stability of the EMM system, we present modified small gain theorems depending on the magnitude of the external input (s) in the cases of one input and two inputs. Next, with the help of the theorem for feedback systems with two inputs, we clarify the condition under which the control system is stable for the reference input magnitude within a certain range, and is also robust for small disturbances. The modified small gain theorems are effective for the stability analysis of the nonlinear feedback control systems which do not have affine finite gain.

  • Behavior of the Steepest Descent Method in Minimizing Rayleigh Quotient

    Takashi OZEKI  Taizo IIJIMA  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E80-A No:1
      Page(s):
    176-182

    In this paper we discuss the limiting behavior of the search direction of the steepest descent method in minimizing the Rayleigh quotient. This minimization problem is equivalent to finding the smallest eigenvalue of a matrix. It is shown that the search direction asymptotically alternates between two directions represented by linear combinations of two eigenvectors of the matrix. This is similar to the phenomenon in minimizing the quadratic form. We also show that these eigenvectors correspond to the largest and second-smallest eigenvalues, unlike in the case of the quadratic form.

  • Performance Evaluation of VEEC: The Virtual Execution Environment Control for a Remote Knowledge Base Access

    Yoshitaka FUJIWARA  Shin-ichiro OKADA  Hiroyuki TAKADOI  Toshiharu MATSUNISHI  Hiroshi OHKAMA  

     
    PAPER-Protocol

      Vol:
    E80-B No:1
      Page(s):
    81-86

    In a conventional client-server system using the satellite communications, the responsibility of the system to the client user is considerably degraded by the long transmission time between the satellite and the ground terminal as well as the relatively low data transmission rate in comparison with the ground transmission line as the Ethernet. In this paper, a new client-server control, VEEC, is proposed to solve the problem. As a result of the experimental performance studies, it is clarified that the responsibility in the client is remarkably improved when the pre-fetching mechanism of VEEC works efficiently.

  • Double-Layered Inclined Orbit Constellation for Advanced Satellite Communications Network

    Kazuhiro KIMURA  Keizo INAGAKI  Yoshio KARASAWA  

     
    PAPER-System Technology

      Vol:
    E80-B No:1
      Page(s):
    93-102

    The link properties of double-layered constellation composed of inclined orbits for an advanced global satellite communications network connected by optical inter-satellite links (ISLs) have been evaluated. The constellation consists of lower layer satellites for mobile and personal satellite communications, and upper layer satellites for large-capacity fixed satellite communications and feeder links. Optical inter-satellite links, which can perform high-capacity communications with small terminals, are used for all inter-satellite data transmission. Although a satellite constellation using polar orbits in both layers offers the merit of simplicity in network configurations, it has disadvantages caused by the satellite consentration above high latitudes. The inclined orbit constellation offers the potential for reducing the required number of satellites improving ling properties, and enhancing the coverage in middle and low latitudes, by selecting the optimum orbital inclinations. The link properties between the satellites and terminals on the ground, optical ISL properties, and required number of satellites were evaluated for constellations using inclined orbits, and compared with those of a polar orbit constellation. Three kinds of inclined orbit constellations achieving continuous double coverage, which is a minimum requirement for future advanced satellite communications applying satellite diversity, were assumed for each layer.

  • A Multi-Segment Bandwidth Reservation Protocol for a DQDB Subnetwork

    Yukuo HAYASHIDA  Manabu IKEGAMI  Nobuyuki SUGIMACHI  

     
    PAPER-Communication Networks and Services

      Vol:
    E80-B No:1
      Page(s):
    109-115

    The DQDB MAC Protocol standardized by the IEEE 802.6 Committee is a single segment bandwidth reservation scheme that only reserves bandwidth for one segment in the distributed queue. Recently, multi-segment bandwidth reservation schemes that reserve bandwidth for not only one segment in the distributed queue but also a part of or all segments in the local node queue have been proposed. In this paper, we propose a new multi-segment bandwidth reservation protocol that can quickly react to changes in a node's traffic and can quickly allocate the bandwidth fairly and waste-free. We also evaluate the mean message transmission delay and throughput convergence performance by simulation. As a result, it is shown that the mean message transmission delay can be decreased and the throughput can be quickly converged to fair bandwidth allocation.

  • A Novel ST-DFT based M-ary FSK Demodulation MethodFrequency Sequence Estimationfor LEO Satellite Communications

    Attapol WANNASARNMAYTHA  Shinsuke HARA  Norihiko MORINAGA  

     
    PAPER-Modem and Coding

      Vol:
    E80-B No:1
      Page(s):
    33-39

    This paper proposes a novel M-ary FSK demodulation scheme using the Short Time Discrete Fourier Transform (ST-DFT) analysis named Frequency Sequence Estimation (FSE) for low earth orbit (LEO) satellite-based personal multimedia communications. The FSE is a kind of the Viterbi algorithm, searching for the maximum likely frequency path using the instantaneous ST-DFT output as a metric. It is based on the fact that the discrete time-frequency representation of the received signal can be interpreted as a trellis diagram. The proposed method has the excellent transmission performance and spectral efficiency, as well as its own hardware simplicity and frequency offset insensitivity.

  • On Non-Pseudorandomness from Block Ciphers with Provable Immunity Against Linear Cryptanalysis

    Kouichi SAKURAI  Yuliang ZHENG  

     
    PAPER

      Vol:
    E80-A No:1
      Page(s):
    19-24

    Weakness of a block cipher, which has provable immunity against linear cryptanalysis, is investigated. To this end, the round transformation used in MISTY, which is a data encryption algorithm recently proposed by M. Matsui from Mitsubishi Electric Corporation, is compared to the round transformation of DES from the point of view of pseudrandom generation. An important property of the MISTY cipher is that, in terms of theoretically provable resistance against linear and differential cryptanalysis, which are the most powerful cryptanalytic attacks known to date, it is more robust than the Data Encryption Standard or DES. This property can be attributed to the application of a new round transform in the MISTY cipher, which is obtained by changing the location of the basic round-function in a transform used in DES. Cryptograohic roles of the transform used in the MISTY cipher are the main focus of this paper. Our research reveals that when used for constructiong pseudorandom permutations, the transform employed by the MISTY cipher is inferior to the transform in DES, though the former is superior to the latter in terms of strength against linear and differential attacks. More specifically, we show that a 3-round (4-round, respectively) concatenation of transforms used in the MISTY cipher is not a pseudorandom (super pseudorandom, respectively) permutation.

  • Dependable Bus Arbitraion by Alternating Competition with Checkers

    Kazuo TOKITO  Takashi MATSUBARA  Yoshiaki KOGA  

     
    PAPER-Testing/Checking

      Vol:
    E80-D No:1
      Page(s):
    44-50

    A fault in multi-processing system arbitration circuits result in incorrect arbitration or abnormal operation of the system. A highly reliable system requires dependable arbitration in order to operate properly. Previously, we proposed alternate competing arbitration suitable for highly reliable systems. In this paper, we propose a method for improvement of fault detection and location using additional checkers. This method is effective to maintain reliability of the system.

  • On the Analysis of Global and Absolute Stability of Nonlinear Continuous Neural Networks

    Xue-Bin LIANG  Toru YAMAGUCHI  

     
    PAPER-Neural Networks

      Vol:
    E80-A No:1
      Page(s):
    223-229

    This paper obtains some new results about the existence, uniqueness, and global asymptotic stability of the equilibrium of a nonlinear continuous neural network, under a sufficient condition weaker than ones presented in the literature. The avobe obtained results can also imply the existing ones about avsolute stability of nonlinear continuous neural networks

  • Low-Cost Hybrid WDM Module Consisting of a Spot-Size Converter Integrated Laser Diode and a Waveguide Photodiode on a PLC Platform for Access Network Systems

    Naoto UCHIDA  Yasufumi YAMADA  Yoshinori HIBINO  Yasuhiro SUZUKI  Noboru ISHIHARA  

     
    INVITED PAPER-Module and packaging technology

      Vol:
    E80-C No:1
      Page(s):
    88-97

    This paper describes the technological issues in achieving a low-cost hybrid WDM module for access network systems. The problems which should be resolved in developing a low-cost module are clarified from the viewpoint of the module assembly in mass production. A design concept for a low-cost module suitable for mass production is indicated, which simplifies the alignment between a laser diode and a waveguide, and reduces the number of the components such as lenses and mirrors. The low-cost module is achieved by employing a flip-chip bonding method with passive alignment using a spot-size converter integrated laser diode (SS-LD) and p-i-n waveguide photodiodes (WGPDs) on a planar lightwave circuit (PLC) platform. We confirm that the SS-LD and the WGPD provide high coupling efficiency with a large tolerance for passive alignment. To achieve a high-sensitivity receiver, the module is designed to employ an asymmetric PLC Y-splitter that prefers a PD responsivity to an LD output power because of the high-coupling efficiency of the LD, and to employ a bare preamplifier mounting to reduce the parasitic capacitance into a preamplifier. We also demonstrate the dynamic performance for a 50-Mb/s burst signal, such as a high sensitivity, an instantaneous AGC response, and a small APC deviation of the transceiver.

  • New Signature Schemes Based on Factoring and Discrete Logarithms

    Chi-Sung LAIH  Wen-Chung KUO  

     
    PAPER

      Vol:
    E80-A No:1
      Page(s):
    46-53

    In this paper, two new signature schemes whose security is based on both discrete logarithms and factorization are proposed to enhance the security of the OSS signature scheme. The major benefit of these new signature schemes is that the signer dose not need to know how to factor p-1, thus it is possible for every user to employ the same modulus p, where p is the modulus commonly used in the system. Furthermore, two identification schemes based on this advantage are also developed in this paper.

  • On Multi-Inkdot Two-Way Alternating Turing Machines and Pushdown Automata with Sublogarithmic Space and Constant Leaf-Size

    Jianliang XU  Katsushi INOUE  Yue WANG  Akira ITO  

     
    LETTER-Automata,Languages and Theory of Computing

      Vol:
    E80-D No:1
      Page(s):
    86-90

    This paper investigates the accepting powers of multi-inkdot two-way alternating pushdown automata (Turing machines) with sublogarithmic space and constant leaf-size. For each k1, and each m0, let weak-ASPACEm [L(n),k] denote the class of languages accepted by simultaneously weakly L(n) space-bounded and k leaf-bounded m-inkdot two-way alternating Turing machines, and let strong-2APDAm[L(n),k] denote the class of languages accepted by simultaneously strongly L(n) space-bounded and k leaf-bounded m-inkdot two-way alternating pushdown automata. We show that(1) strong-2APDAm [log log n,k+1]weak-ASPACEm[o(log n),k]φfor each k1 and each m1, and(2) strong-2APDA(m+1) [log log n,k]weak-ASPACEm[o(log n),k]φfor each k1 and each m0.

  • The Complexity of Threshold Circuits for Parity Functions

    Shao-Chin SUNG  Tetsuro NISHINO  

     
    LETTER-Algorithm and Computational Complexity

      Vol:
    E80-D No:1
      Page(s):
    91-93

    In this paper, we show that a parity function with n variables can be computed by a threshold circuit of depth O((log n)/c) and size O((2clog n)/c), for all 1c [log(n+1)]-1. From this construction, we obtain an O(log n/log log n) upper bound for the depth of polylogarithmic size threshold circuits for parity functions. By using the result of Impagliazzo, Paturi and Saks[5], we also show an Ω (log n/log log n) lower bound for the depth of the threshold circuits. This is an answer to the open question posed in [11].

  • Offset QPSK Simultaneous Carrier and Bit-Timing Recovery SchemeAgile Acquisition over Satellite Communication Channels

    Yoichi MATSUMOTO  

     
    PAPER-Modem and Coding

      Vol:
    E80-B No:1
      Page(s):
    16-24

    This paper proposes a new simultaneous carrier and bit-timing recovery (CBR) scheme for offset quadrature phase shift keying (O-QPSK) for agile acquisition over satellite communication channels. The proposed simultaneous CBR scheme employs a preamble shared for the carrier and bit-timing recover, which has a specific bit-pattern designed so that its baseband signal alternates between two adjacent decision points at the symbol rate. Using the preamble, the proposed simultaneous CBR scheme estimates the carrier phase and the bit-timing, simultaneously and independently, by open-loop approach. For comparison, this paper also describes the performance and configuration of a joint carrier and bit-timing recovery scheme, which is expanded for O-QPSK from the one conventionally proposed for QPSK. This paper demonstrates with simulation results that the proposed simultaneous CBR scheme significantly improves the agility of acquisition: a mere 30-symbol preamble is sufficient for low-Eb/No channels typical of satellite communication systems. The proposed CBR scheme is also advantageous from the viewpoint of digital implementation: it processes at 2 samples/symbol and eliminates an analog voltage control clock (VCC). The proposed simultaneous CBR scheme is a strong candidate for TDMA systems that require the high data-transmission and frequency utilization efficiency.

  • Throughput Improvement of CDMA Slotted ALOHA Systems

    Masato SAITO  Hiraku OKADA  Takeshi SATO  Takaya YAMAZATO  Masaaki KATAYAMA  Akira OGAWA  

     
    PAPER-Protocol

      Vol:
    E80-B No:1
      Page(s):
    74-80

    In this paper, we evaluate the throughput performance of CDMA Slotted ALOHA systems. To improve the throughput performance, we employ the Quasi-synchronous sequences and the Modified Channel Load Sensing Protocol as an access control procedure. As a result, we found a good throughput by the QS-sequences. By employing MCLSP, we can keep the maximum throughput even in high offered load and in the presence of a long access timing delay, which is one of the issue in satellite packet communication systems.

  • GTD Analysis for Evanescent Modal Excitation

    Hiroshi SHIRAI  Yoshiyasu MATSUDA  Ryoichi SATO  

     
    LETTER-Electromagnetic Theory

      Vol:
    E80-C No:1
      Page(s):
    190-192

    A simple extension to treat evanescent modal excitation at the aperture of a parallel plane waveguide is shown here by GTD diffracted rays with complex propagation angles. Numerical comparison with other solution confirmed that our simple solution can be used for modal excitation estimation below the cut-off frequency.

20181-20200hit(22683hit)