The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

18381-18400hit(22683hit)

  • Development of Low-Noise Terahertz SIS Mixers with High Current Density NbN/AlN/NbN Tunnel Junctions

    Zhen WANG  Yoshinori UZAWA  Akira KAWAKAMI  

     
    INVITED PAPER-Analog Applications

      Vol:
    E83-C No:1
      Page(s):
    27-33

    We report on progress in the development of high current density NbN/AlN/NbN tunnel junctions for application as submillimeter wave SIS mixers. A ultra-high current density up to 120 kA/cm2, roughly two orders of magnitude larger than any reported results for all-NbN tunnel junctions, was achieved in the junctions. The magnetic field dependence and temperature dependence of critical supercurrents were measured to investigate the Josephson tunneling behaviour of critical supercurrents in the high-Jc junctions. We have developed a low-noise quasi-optical SIS mixer with the high-current density NbN/AlN/NbN junctions and two-junction tuning circuits which employ Al/SiO/NbN microstriplines. The tuning characteristics of the mixer were investigated by measuring the response in the direct detection mode by using the Fourier Transform Spectrometer (FTS) and measuring the response in the heterodyne detection mode with the standard Y-factor method at frequencies from 670 to 1082 GHz. An uncorrected double sideband receiver noise temperature of 457 K (12hν/kB) was obtained at 783 GHz.

  • Recent Progress of High-Temperature Superconductor Josephson Junction Technology for Digital Circuit Applications

    Jiro YOSHIDA  

     
    INVITED PAPER-Digital Applications

      Vol:
    E83-C No:1
      Page(s):
    49-59

    Recent progress of high-temperature superconductor Josephson junction technology is reviewed in the light of the future application to digital circuits. Among various types of Josephson junctions so far developed, ramp-edge-type junctions with a barrier layer composed of oxide materials in the vicinity of metal-insulator transition seem to offer a unique opportunity to fulfill all the requirements for digital circuit applications by virtue of their small junction dimensions, overdamped properties and relatively high IcRn product values at the temperature of around 30-40 K. Recently developed interface engineered junctions can be classified as junctions of this type. These junctions also raise an interesting problem in physics concerning the possibility of resonant tunneling of Cooper pairs via localized states in the barrier. From the viewpoint of practical applications, the improvement of the spread of the junction parameters is still a serious challenge to the present fabrication technology. Although interface engineered junctions seem to be most promising in this regard at present, 1σ spread of around 8% in the present fabrication technology is far from satisfactory for the fabrication of large-scale integrated circuits. The detailed understanding of the barrier formation mechanism in the interface engineered junction is indispensable not only for advancing this particular fabrication technology but also for improving other junction technology utilizing ramp-edge structures.

  • An Efficient Fuzzy Based Traffic Policer for ATM Networks

    Mohammad Hossien YAGHMAEE  Mostafa SAFAVI  Mohammad Bager MENHAJ  

     
    PAPER-Switching and Communication Processing

      Vol:
    E83-B No:1
      Page(s):
    1-9

    In Asynchronous Transfer Mode (ATM) networks, congestion can be caused by unpredictable statistical fluctuations of traffic flows and fault conditions within the network. If congestion happens, then the network performance for the already established connection will decrease. ATM networks use the preventive congestion control mechanisms such as Usage Parameter Control (UPC) and Connection Admission Control (CAC) to avoid congested conditions. Knowing that many sources in ATM networks have variable traffic stream with different QoS characteristics, traffic management functions become necessary to control the traffic flows within the network. By using the signaling procedures at the call setup phase, the network and source reach an agreement for some traffic characteristic parameters. If the source violates the traffic parameters, then the probability of congestion increases. So the network must control the source traffic streams and detect well the violating cells. Therefore, fast detection of any violating source is one of the most important characteristics of a good traffic policer. In this paper we propose a fuzzy traffic policer with high ability in detection of violating sources. Our proposed fuzzy controller has two inputs, estimated passed mean cell rate and the current state of the counter. If the output of fuzzy controller is 1, then the input cell is detected as violating cell, otherwise it is a non-violating cell. Simulation results obtained from two traffic sources, show that the proposed traffic policer has better selectivity than the conventional leaky bucket. It is observed that our proposed traffic policer has better ability for mean cell rate control, peak cell rate control and burst duration control. Furthermore, it is observed that the proposed traffic policer outperforms the conventional leaky bucket specially when the dynamic behavior is considered.

  • Application of the AC Josephson-Effect for Precise Measurement

    Haruo YOSHIDA  

     
    INVITED PAPER-Analog Applications

      Vol:
    E83-C No:1
      Page(s):
    20-26

    It is the purpose of this paper to review the generation of quantized voltage steps in Josephson-junctions, and also the recent practical application of these precise measurements. A 10-V Josephson-junction-array-voltage standard system has been established with a Josephson-junction-array, a phase-locked millimeter wave, and a precise null-detection system. Based on these technologies, the AC Josephson effect has been applied to other precise measurements such as DC error voltage of a multi-integrating analog-to-digital converter and for a pulse-width-modulation type precise voltage calibrator.

  • Practical Evaluation of Security against Generalized Interpolation Attack

    Kazumaro AOKI  

     
    PAPER

      Vol:
    E83-A No:1
      Page(s):
    33-38

    Interpolation attack was presented by Jakobsen and Knudsen at FSE'97. Interpolation attack is effective against ciphers that have a certain algebraic structure like the PURE cipher which is a prototype cipher, but it is difficult to apply the attack to real-world ciphers. This difficulty is due to the difficulty of deriving a low degree polynomial relation between ciphertexts and plaintexts. In other words, it is difficult to evaluate the security against interpolation attack. This paper generalizes the interpolation attack. The generalization makes easier to evaluate the security against interpolation attack. We call the generalized interpolation attack linear sum attack. We present an algorithm that evaluates the security of byte-oriented ciphers against linear sum attack. Moreover, we show the relationship between linear sum attack and higher order differential attack. In addition, we show the security of CRYPTON, E2, and RIJNDAEL against linear sum attack using the algorithm.

  • Two Discrete Log Algorithms for Super-Anomalous Elliptic Curves and Their Applications

    Noboru KUNIHIRO  Kenji KOYAMA  

     
    PAPER

      Vol:
    E83-A No:1
      Page(s):
    10-16

    Super-anomalous elliptic curves over a ring Z/nZ ;(n=Πi=1k piei) are defined by extending anomalous elliptic curves over a prime filed Fp. They have n points over a ring Z/nZ and pi points over Fpi for all pi. We generalize Satoh-Araki-Smart algorithm and Ruck algorithm, which solve a discrete logarithm problem over anomalous elliptic curves. We prove that a "discrete logarithm problem over super-anomalous elliptic curves" can be solved in deterministic polynomial time without knowing prime factors of n.

  • Knowledge Discovery and Self-Organizing State Space Model

    Tomoyuki HIGUCHI  Genshiro KITAGAWA  

     
    INVITED PAPER

      Vol:
    E83-D No:1
      Page(s):
    36-43

    A hierarchical structure of the statistical models involving the parametric, state space, generalized state space, and self-organizing state space models is explained. It is shown that by considering higher level modeling, it is possible to develop models quite freely and then to extract essential information from data which has been difficult to obtain due to the use of restricted models. It is also shown that by rising the level of the model, the model selection procedure which has been realized with human expertise can be performed automatically and thus the automatic processing of huge time series data becomes realistic. In other words, the hierarchical statistical modeling facilitates both automatic processing of massive time series data and a new method for knowledge discovery.

  • E2--A New 128-Bit Block Cipher

    Masayuki KANDA  Shiho MORIAI  Kazumaro AOKI  Hiroki UEDA  Youichi TAKASHIMA  Kazuo OHTA  Tsutomu MATSUMOTO  

     
    PAPER

      Vol:
    E83-A No:1
      Page(s):
    48-59

    This paper describes the design principles, the specification, and evaluations of a new 128-bit block cipher E2, which was proposed to the AES (Advanced Encryption Standard) candidates. This algorithm supports 128-bit, 192-bit, and 256-bit secret keys. The design philosophy of E2 is highly conservative; the structure uses 12-round Feistel as its main function whose round function is constructed with 2-round SPN structure, and initial/final transformational functions. E2 has practical security against differential attack, linear attack, cryptanalysis with impossible differential, truncated differential attack, and so on. Furthermore, E2 can be implemented efficiently and flexibly on various platforms because the primitive operations involve byte length processing.

  • Mobile Multimedia Access Protocols in Packet-typed Wireless Networks

    Tetsuya YAMASHITA  Takashi MATSUMOTO  Hiromi OKADA  

     
    PAPER-Mobile Communication

      Vol:
    E83-B No:1
      Page(s):
    56-67

    In this paper, we present an access scheme for packet-typed wireless networks, called DQRUMA/PAR (Distributed-Queueing Request Update Multiple Access with Periodically Automatic Reservation), which can transmit multimedia traffic efficiently. Here, we deal with three kinds of traffic i. e. voice, data and still picture. DQRUMA/PAR introduces the transmission scheme that mobile stations for voice communications reserve the transmission capacity periodically during their talkspurts. The transmission control process of DQRUMA/PAR will become easier than the one of DQRUMA, and the delay characteristic of voice is improved. Furthermore, we study two enforced protocols on DQRUMA/PAR. One is the more enforced protocol for voice communications. We call this as Voice Enforced mode (VE mode) on DQRUMA/PAR. The other is the more enforced protocol for data communications. We call this as Data Enforced mode (DE mode) on DQRUMA/PAR. The transmission delay of voice will become reduced significantly by introducing VE mode. On the other hand, the transmission delay characteristic of data will be improved by introducing DE mode. We carry out the performance comparisons of pure DQRUMA/PAR with PRMA and DQRUMA and show the considerable improvement of the protocol numerically. Next we make the performance comparisons between pure DQRUMA/PAR and two enforced modes on DQRUMA/PAR and show the considerable improvements of these enforced protocols, respectively.

  • How to Enhance the Security of Public-Key Encryption at Minimum Cost

    Eiichiro FUJISAKI  Tatsuaki OKAMOTO  

     
    PAPER

      Vol:
    E83-A No:1
      Page(s):
    24-32

    This paper presents a simple and generic conversion from a public-key encryption scheme that is indistinguishable against chosen-plaintext attacks into a public-key encryption scheme that is indistinguishable against adaptive chosen-ciphertext attacks in the random oracle model. The scheme obtained by the conversion is as efficient as the original encryption scheme and the security reduction is very tight in the exact security manner.

  • Progress in High Tc Superconducting Quantum Interference Device (SQUID) Magnetometer

    Keiji ENPUKU  Tadashi MINOTANI  

     
    INVITED PAPER-SQUIDs

      Vol:
    E83-C No:1
      Page(s):
    34-43

    Recent progresses in high Tc superconducting quantum interference device (SQUID) magnetometers are discussed. First, intrinsic sensitivity of the SQUID at T=77 K is discussed. For this purpose, transport and noise properties of the bicrystal junction are clarified, and optimization of junction parameters is shown. We also discuss the quality of the SQUID from a comprehensive comparison between experiment and simulation of the SQUID characteristics. Next, we discuss issues to guarantee correct operation of the SQUID magnetometer in noisy environment, such as a method to avoid flux trapping due to earth magnetic field, high-bandwidth electronics and gradiometer. Finally, we briefly describe application fields of the high Tc magnetometer.

  • New Methods for Generating Short Addition Chains

    Noboru KUNIHIRO  Hirosuke YAMAMOTO  

     
    PAPER

      Vol:
    E83-A No:1
      Page(s):
    60-67

    Power exponentiation is an important operation in modern cryptography. This operation can be efficiently calculated using the concept of the addition chain. In this paper, two new systematic methods, a Run-length method and a Hybrid method, are proposed to generate a short addition chain. The performance of these two methods are theoretically analyzed and it is shown that the Hybrid method is more efficient and practical than known methods. The proposed methods can reduce the addition chain length by 8%, in the best case, compared to the Window method.

  • Fuzzy Inference in Engineering Electromagnetics: An Application to Conventional and Angled Monopole-Antenna

    Majid TAYARANI  Yoshio KAMI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E83-C No:1
      Page(s):
    85-97

    The abilities of fuzzy inference methods in modeling of complicated systems are implemented to electromagnetics for the first time. The very popular and well known monopole antenna is chosen as a general example and a fast, simple and accurate fuzzy model for its input impedance is made by introducing a new point of view to impedance basic parameters. It is established that a surprisingly little number of input data points is sufficient to make a full model and also the system behavior (dominant rules) are saved as simple membership functions. The validity of the derived rules is confirmed through applying them to the case of thin-angled monopole antenna and comparing the results with the measured. Finally using the spatial membership function context, input impedance of thick-angled monopole antenna is predicted and a novel view point to conventional electromagnetic parameters is discussed to generalize the modeling method.

  • Parameter Optimization of Single Flux Quantum Digital Circuits Based on Monte Carlo Yield Analysis

    Nobuyuki YOSHIKAWA  Kaoru YONEYAMA  

     
    PAPER-Digital Applications

      Vol:
    E83-C No:1
      Page(s):
    75-80

    We have developed a parameter optimization tool, Monte Carlo Josephson simulator (MJSIM), for rapid single flux quantum (RSFQ) digital circuits based on a Monte Carlo yield analysis. MJSIM can generate a number of net lists for the JSIM, where all parameter values are varied randomly according to the Gaussian distribution function, and calculate the circuit yields automatically. MJSIM can also produce an improved parameter set using the algorithm of the center-of-gravity method. In this algorithm, an improved parameter vector is derived by calculating the average of parameter vectors inside and outside the operating region. As a case study, we have optimized the circuit parameters of an RS flip-flop, and investigated the validity and efficiency of this optimization method by considering the convergency and initial condition dependence of the final results. We also proposed a method for accelerating the optimization speed by increasing 3σ spreads of the parameter distribution during the optimization.

  • A Time Division Duplex CDMA System Using Asymmetric Modulation Scheme in Duplex Channel

    Incheol JEONG  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E82-B No:12
      Page(s):
    1956-1963

    Multi-carrier (MC) signal has a large peak to mean envelope power ratio, so that the MC signal suffers from a high level of inter-modulation distortion due to the nonlinearity of the power amplifier stage. For portable terminals, it is undesirable to use linear amplifiers because high power efficiency is needed. To solve this problem, we propose a time division duplex (TDD)-code division multiple access (CDMA) communication system which uses an asymmetric modulation scheme between the forward and reverse links. The system consists of multicarrier modulation for the forward link and single carrier modulation for the reverse link. A pre-equalization method for the forward link transmission is also presented in this paper. In frequency selective fading, the system achieves a path diversity effect without any channel estimation unit at the mobile station by using the pre-phase equalizer. From the simulation results, it it found that the proposed system achieves better BER performance than the conventional MC-CDMA system and the single carrier RAKE system equipped at the mobile unit since the proposed system has the ability to suppress other user interfering signals.

  • Robust Controller Design for a T-S Fuzzy Modeled System with Modeling Error

    Jeyoung RYU  Sangchul WON  

     
    LETTER-Systems and Control

      Vol:
    E82-A No:12
      Page(s):
    2829-2832

    This paper presents a new fuzzy dynamic output feedback controller design technique for the Takagi Sugeno (T-S) fuzzy model with unknown-but-bounded time-varying modeling error. It is shown that the quadratic stabilization problem of the T-S fuzzy modeled system can be converted into an H control problem of the scaled polytopic Linear Parameter Varying (LPV) system. Then, a controller satisfying a prescribed H performance is designed for the stabilization of the T-S fuzzy modeled system.

  • A Practical Method for Constructing a Semi-Optimal Coterie

    Takashi HARADA  Masafumi YAMASHITA  

     
    LETTER-Algorithm and Computational Complexity

      Vol:
    E82-D No:12
      Page(s):
    1634-1638

    A coterie is a set of quorums such that any two quorums intersect each other, and is used in a quorum based algorithm for solving the mutual exclusion problem. The availability of a coterie is the probability that the algorithm (adopting the coterie) tolerates process and/or link failures. Constructing an optimal coterie in terms of the availability is therefore important from the view of fault tolerance, but unfortunately, even calculating the availability is known to be #P-hard. Recently Harada and Yamashita proposed several heuristic methods for improving the availability of a coterie. This letter first evaluates their performance and then proposes a practical method for constructing a semi-optimal coterie by using one of the heuristic methods as a main component.

  • Design of Optimal Array Processors for Two-Step Division-Free Gaussian Elimination

    Shietung PENG  Stanislav G. SEDUKHIN  

     
    PAPER-Algorithm and Computational Complexity

      Vol:
    E82-D No:12
      Page(s):
    1503-1511

    The design of array processors for solving linear systems using two-step division-free Gaussian elimination method is considered. The two-step method can be used to improve the systems based on the one-step method in terms of numerical stability as well as the requirements for high-precision. In spite of the rather complicated computations needed at each iteration of the two-step method, we develop an innovative parallel algorithm whose data dependency graph meets the requirements for regularity and locality. Then we derive two-dimensional array processors by adopting a systematic approach to investigate the set of all admissible solutions and obtain the optimal array processors under linear time-space scheduling. The array processors is optimal in terms of the number of processing elements used.

  • Service Fairness in CDMA Cellular Packet Systems with Site Diversity Reception

    Kazuo MORI  Takehiko KOBAYASHI  Takaya YAMAZATO  Akira OGAWA  

     
    PAPER

      Vol:
    E82-B No:12
      Page(s):
    1964-1973

    This paper examines fairness of service in the up-link of CDMA cellular slotted-ALOHA packet communication systems with site diversity reception. Site diversity rescues the packets originating mainly from near the edge of the cells, whereas packets originating near the base stations can not obtain the benefits of diversity reception. This situation causes an unfairness in packet reception that depends on location of the mobile station. Two transmission control schemes for reducing this unfairness are proposed. In the first scheme, mobile stations control the target received power for the open-loop power control based on the reception level of the pilot signals of the surrounding base stations. In the second, mobile stations control transmit permission probability. Successful packet reception rate, fairness coefficient and throughput performance are evaluated in fading environments with imperfect power control. Computer simulation shows that both schemes improve service fairness for all mobile stations and throughput performances. A performance comparison between the two schemes concludes that transmission power control outperforms transmit permission probability control as a simple technique for maintaining fairness of services.

  • A Proposal of Simultaneous Spread of PPM in Frequency and Time Axes for Adaptive CDMA

    Jinsong DUAN  Ikuo OKA  Chikato FUJIWARA  

     
    PAPER-Radio Communication

      Vol:
    E82-B No:12
      Page(s):
    2126-2135

    We have two goals in this paper. One is the comparison of Spread Spectrum (SS) CDMA and Spread Time (ST) CDMA. The other is to propose a new SS-ST CDMA system, which is an adaptive CDMA with both merits of SS and ST CDMA. SS and ST CDMA are compared from the view point of two dimensional space "frequency (B Hz)-time (T Sec)" together with their communication capacity. A primary modulation is assumed to be PPM in ST CDMA, and FSK in SS CDMA which is regarded as PPM in frequency axis. Both SS and ST CDMA are combined to give the proposed SS-ST CDMA, where transmitted signals are spread both in time and frequency domain. In order to realize the proposed system, a transmitter model is presented, and two receiver structures are discussed. The discrete Fourier transform (DFT) is employed for the system flexibility. Although SS, ST and SS-ST CDMA are shown to have the same capacity of 0.7213, the combined SS-ST CDMA has a merit of adaptability to adjust spreading gain of ST and SS according to property of channels, an impulsive noise dominated or a CW interference dominated channel. Numerical results of DFT are also shown to illustrate the waveform and spectrum of the proposed SS-ST CDMA system. Finally the symbol error probability performance of ST PPM, SS FSK and combined SS-ST systems in CW and impulsive environment is presented.

18381-18400hit(22683hit)