The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Z(5900hit)

4101-4120hit(5900hit)

  • Two Step POS Selection for SVM Based Text Categorization

    Takeshi MASUYAMA  Hiroshi NAKAGAWA  

     
    PAPER

      Vol:
    E87-D No:2
      Page(s):
    373-379

    Although many researchers have verified the superiority of Support Vector Machine (SVM) on text categorization tasks, some recent papers have reported much lower performance of SVM based text categorization methods when focusing on all types of parts of speech (POS) as input words and treating large numbers of training documents. This was caused by the overfitting problem that SVM sometimes selected unsuitable support vectors for each category in the training set. To avoid the overfitting problem, we propose a two step text categorization method with a variable cascaded feature selection (VCFS) using SVM. VCFS method selects a pair of the best number of words and the best POS combination for each category at each step of the cascade. We made use of the difference of words with the highest mutual information for each category on each POS combination. Through the experiments, we confirmed the validation of VCFS method compared with other SVM based text categorization methods, since our results showed that the macro-averaged F1 measure (64.8%) of VCFS method was significantly better than any reported F1 measures, though the micro-averaged F1 measure (85.4%) of VCFS method was similar to them.

  • A Self-Stabilizing Distributed Algorithm for the Steiner Tree Problem

    Sayaka KAMEI  Hirotsugu KAKUGAWA  

     
    PAPER

      Vol:
    E87-D No:2
      Page(s):
    299-307

    Self-stabilization is a theoretical framework of non-masking fault-tolerant distributed algorithms. In this paper, we investigate the Steiner tree problem in distributed systems, and propose a self-stabilizing heuristic solution to the problem. Our algorithm is constructed by four layered modules (sub-algorithms): construction of a shortest path forest, transformation of the network, construction of a minimum spanning tree, and pruning unnecessary links and processes. Competitiveness is 2(1-1/l), where l is the number of leaves of optimal solution.

  • An Improved Fast Encoding Algorithm for Vector Quantization Using 2-Pixel-Merging Sum Pyramid and Manhattan-Distance-First Check

    Zhibin PAN  Koji KOTANI  Tadahiro OHMI  

     
    LETTER-Image Processing, Image Pattern Recognition

      Vol:
    E87-D No:2
      Page(s):
    494-499

    Vector quantization (VQ) features a very heavy encoding process. In previous work, an efficient encoding algorithm using mean pyramid has been developed. To improve it further, a fast search algorithm is proposed in this letter. Specifically speaking, four major modifications are made. First, to rearrange the original codebook directly along the sorted real sums to reduce the search scope and then update the lower and upper bound dynamically. Second, to use sum instead of the mean that includes roundoff error to thoroughly avoid a possible mismatched winner. Third, to construct a sum pyramid using 2-pixel-merging other than 4-pixel-merging way to generate more in-between levels. Fourth, to introduce the Cauchy-Schwarz inequality to bridge Euclidean and Manhattan distance together so that the difference check between 2 vectors can be pre-conducted only by much lighter Manhattan distance computation. Experimental results show that the proposed algorithm is more search-efficient.

  • Differential Voltage (ΔV) Comparator with Variable Channel-Size MOSFET

    Yasuhiro KOSASAYAMA  Yutaka ARIMA  Masashi UENO  Masafumi KIMATA  Kana HIMEI  Tanemasa ASANO  

     
    PAPER

      Vol:
    E87-A No:2
      Page(s):
    357-363

    This paper describes the operation and the test results of a novel comparator, called a differential voltage (ΔV) comparator, which detects the difference between two input signal voltages. This comparator utilizes variable threshold voltage inverters (VT-INVs) which can change a logic threshold continuously using a variable channel size MOSFETs (VS-MOSs). The circuit configuration is very simple, and has the potential to achieve high integration and low power consumption in mixed signal system LSIs.

  • A Gm-C Filter Using Multiple-Output Linearized Transconductors

    Tadashi ARAI  Tetsuro ITAKURA  

     
    PAPER

      Vol:
    E87-A No:2
      Page(s):
    384-389

    A Gm-C filter using multiple-output transconductors suitable for reducing the chip area and power consumption is presented. The novel multiple-output transconductor is based on a translinear gain cell with a linearized input stage. Making good use of the linearized input stage, a simple common-mode feedback is also proposed for this multiple-output transconductor. Using the proposed technique, a 5th-order lowpass filter with two transmission zeros was designed and fabricated as a main part of a lowpass channel selection filter for UMTS receivers. A channel of the filter consumes 7 mA from a 2.7 V power supply and the integrated input-referred noise was 21 dBuV with 20 dB pass band gain. The proposed multiple-output technique saves roughly half the number of transconductors compared with the typical active ladder filter design. The proposed multiple-output transconductors achieve linearization and effective reduction while saving linearized input stages. They are suitable for a filter with small power consumption and small area.

  • Synthesis of a Complex RiCR Filter with Finite Transmission Zeros

    Hidehiro KIKUCHI  Yukio ISHIBASHI  Kazuhiro SHOUNO  

     
    PAPER

      Vol:
    E87-A No:2
      Page(s):
    390-397

    This paper describes synthesis of a complex RiCR filter with a finite transmission zero except zero frequency. The frequency response of the proposed filter is similar to the conventional elliptic filter. The proposed filter can be composed of fewer elements than the conventional one. A new kernel function is proposed. As an example, a fifth-order RiCR filter is designed. We compare the proposed filter with the conventional complex elliptic filter from the viewpoint of the frequency response and the number of the required elements.

  • Highly Nonlinear Dispersion-Flattened Polarization-Maintaining Photonic Crystal Fiber in 1.55 µm Region

    Takashi YAMAMOTO  Hirokazu KUBOTA  Satoki KAWANISHI  Masatoshi TANAKA  Syun-ichiro YAMAGUCHI  

     
    LETTER-Optoelectronics

      Vol:
    E87-C No:2
      Page(s):
    250-252

    We describe the first highly nonlinear dispersion-flattened polarization-maintaining photonic crystal fiber designed for nonlinear optics applications in the 1.55 µm region. The nonlinear coefficient of the fiber is 19 (W-1km-1), which is ten times that of dispersion shifted fiber. The chromatic dispersion and dispersion slope of the fiber at 1.55 µm are -0.23 ps/km/nm and 0.01 ps/km/nm2, respectively. We demonstrate the generation of a supercontinuum using the photonic crystal fiber. A symmetrical supercontinuum over 40 nm is obtained by injecting 1562 nm, 2.2 ps, and 40 GHz optical pulses into the 200 m-long photonic crystal fiber.

  • Drain Current Zero-Temperature-Coefficient Point for CMOS Temperature-Voltage Converter Operating in Strong Inversion

    Hidetoshi IKEDA  Kawori TAKAKUBO  Hajime TAKAKUBO  

     
    PAPER

      Vol:
    E87-A No:2
      Page(s):
    370-375

    Temperature dependence of drain current is analyzed in detail in terms of mobility and threshold voltage. From the analyses, it is proved that a point exists that the drain current is fixed without depending on temperature when the MOSFET operates in strong inversion. Applying this characteristic, a CMOS temperature-voltage converter operating in strong inversion with high linearity is proposed. SPICE simulation and experimental results are shown, and the corresponding performances are discussed.

  • A Thin-Film Glucose Biosensor Based on Hexamethyldisiloxane Plasma-Polymerized Film: Influence of Its Film Thickness on the Platinum Electrode

    Yoshihiro KASE  Hitoshi MUGURUMA  Atsunori HIRATSUKA  Isao KARUBE  

     
    PAPER-Nano-interface Controlled Electronic Devices

      Vol:
    E87-C No:2
      Page(s):
    142-147

    An amperometric thin-film glucose biosensor based on a plasma-polymerized film using hexamethyldisiloxane as the monomer is presented. The plasma-polymerized film, achieved in plasma in the vapor phase, offers a new alternative for use in the design of the electrode-enzyme interface of biosensors. The film shows promise of high sensor performance; namely, rapid sensor response, low noise, a wide dynamic range, reproducibility, and reduction in the effects of interfering materials such as ascorbic acid. In this study, we examined the usefulness of the hexamethyldisiloxane plasma-polymerized film and investigated how the thickness of the plasma-polymerized film on a platinum electrode affected sensor characteristics: the selectivity for hydrogen peroxide versus interfering agents, the sensor response due to enzymatic reaction, and oxygen depletion.

  • Bandwidth Extrapolation Technique for Polarimetric Radar Data

    Kei SUWA  Masafumi IWAMOTO  

     
    PAPER-Sensing

      Vol:
    E87-B No:2
      Page(s):
    326-334

    Range resolution for radar is determined by bandwidth. One of the various super-resolution techniques for improving resolution is bandwidth extrapolation (BWE). In this technique, a linear prediction model is fitted to the data, and the model is used to extrapolate the bandwidth. In this paper, we extend BWE, and propose a new algorithm that we call polarimetric bandwidth extrapolation (PBWE) applicable to polarimetric radar data. We show through numerical simulations that utilization of fully polarimetric information allows PBWE to improve the resolution beyond the conventional BWE method. Some results of a physical simulation experiment using a W-band polarimetric FMCW radar and corner reflectors are shown to confirm the advantage of PBWE.

  • Influence of Frequency Characteristics of RF Circuits in Digital Predistortion Type Linearizer System on Adjacent Channel Leakage Ratio for W-CDMA Power Amplifier

    Takeshi TAKANO  Toru MANIWA  Yasuyuki OISHI  Kiyomichi ARAKI  

     
    PAPER

      Vol:
    E87-A No:2
      Page(s):
    324-329

    In recent years, digital predistortion linearizers have been used in power amplifiers for mobile communications because they are simpler and provide higher power efficiency than conventional feedforward systems. However, in systems that cover a wider frequency band, it is impossible to disregard the frequency characteristics of their various parameters since the degradation that can result causes a decline in output power efficiency which is the most important property of a power amplifier. To date, no detailed studies have been carried out on predistortion compensation systems. Thus, we focused our research on these systems and in this paper we report the simulation and experimental results we obtained for clarifying these effects. In our experiments, we used a W-CDMA power amplifier to determine how much the distortion compensation effect is degraded by the frequency characteristics of analog RF circuits. The results of experiments to determine the relationship between the ACLR (Adjacent Channel Leakage power Ratio) and power efficiency are also reported.

  • Feasibility of Ultra-Thin Films for Gate Insulator by Limited Reaction Sputtering Process

    Kimihiro SASAKI  Kentaro KAWAI  Tatsuhiro HASU  Makoto YABUUCHI  Tomonobu HATA  

     
    PAPER

      Vol:
    E87-C No:2
      Page(s):
    218-222

    A new sputtering technique named "itshape limited reaction sputtering" is proposed and the feasibility toward an ultra-thin gate insulator is investigated. 5-10 nm thick ZrO2 films were prepared on Si(100) substrates and analyzed by XPS, HR-RBS and RHEED. Significant Zr diffusion into the Si substrate and interface oxidation were not observed. An optimum film was obtained at growth temperature of 300, oxygen flow rate of 4.2% and 500-10 sec RTA. The equivalent oxide thickness of 2 nm was realized with leakage current of 10-7 A/cm2 at 1.5 MV/cm.

  • On Robust Approximate Feedback Linearization

    Ho-Lim CHOI  Jong-Tae LIM  

     
    LETTER-Systems and Control

      Vol:
    E87-A No:2
      Page(s):
    502-504

    In this paper, we consider a problem of global stabilization of a class of nonlinear systems which are approximately feedback linearizable. We propose a control law with the gain-scaling factor and analytically show the robust aspect of approximate feedback linearization in a more general framework.

  • Secure Detection of Watermarks

    Jun FURUKAWA  

     
    PAPER-Applications

      Vol:
    E87-A No:1
      Page(s):
    212-220

    There are two main types of digital watermark systems. In the first, users are given their own detection programs by which to verify the presence of watermark in data they have in their possession. In the second, users must request such verification from a detection center. The disadvantage of the first type is the possibility that a user might be able to analyze the detection program sufficiently to be able to obtain the secret data (secret key) used to embed the watermark. The disadvantage of the second is the possibility that a center might give dishonest results. In this paper, we propose a watermark detection scheme that can be used to overcome the disadvantages of both: it prevents users from obtaining secret key, and it prevents a center from reporting dishonest results. Our scheme is based on a previously proposed scheme which nearly achieved the same goals but, unfortunately, allowed users to receive watermark detection results for data specially created by them so as to reveal, through the results, secret information about how a center created its watermarks. To overcome this drawback, we have developed new scheme by which a center can prove its detection results to a user without revealing any other information. This scheme was developed by extending the work found in. Moreover we provide an option that prevents the center from encroaching on a user's privacy. The resulting watermark detection scheme is the first that, in addition to protecting secret keys of watermarks from user-tampering, is also able to prevent a center from reporting dishonest results. Although the proposed scheme is introduced first using the patch-work watermarking system, it is straightforward to extend it to a scheme that uses the correlation-based watermarking system, which yields a more robust watermark detection scheme.

  • Real-Time Human Motion Analysis by Image Skeletonization

    Hironobu FUJIYOSHI  Alan J. LIPTON  Takeo KANADE  

     
    PAPER-Face

      Vol:
    E87-D No:1
      Page(s):
    113-120

    In this paper, a process is described for analysing the motion of a human target in a video stream. Moving targets are detected and their boundaries extracted. From these, a "star" skeleton is produced. Two motion cues are determined from this skeletonization: body posture, and cyclic motion of skeleton segments. These cues are used to determine human activities such as walking or running, and even potentially, the target's gait. Unlike other methods, this does not require an a priori human model, or a large number of "pixels on target". Furthermore, it is computationally inexpensive, and thus ideal for real-world video applications such as outdoor video surveillance.

  • Chromatic Dispersion Measurement of Optical Fiber Using Bi-Directional Modulation of Mach-Zehnder Electro-Optical Modulator Embodied in Fiber Loop Mirror

    Keum-Soo JEON  Jae-Kyung PAN  

     
    LETTER-Optical Fiber

      Vol:
    E87-B No:1
      Page(s):
    171-173

    We propose a simple method for the chromatic dispersion measurement of optical fibers by using bi-directional modulation of a Mach-Zehnder electro-optical modulator embodied in a fiber loop mirror. The detected output of the bi-directionally modulated light, with time difference, creates fading in the RF domain. Dispersion is found by measuring the period of fading at different wavelengths.

  • A Digital Image Watermarking Method Based on Labeled Bisecting Clustering Algorithm

    Shu-Chuan CHU  John F. RODDICK  Zhe-Ming LU  Jeng-Shyang PAN  

     
    LETTER-Information Security

      Vol:
    E87-A No:1
      Page(s):
    282-285

    This paper presents a novel digital image watermarking algorithm based on the labeled bisecting clustering technique. Each cluster is labeled either '0' or '1' based on the labeling key. Each input image block is then assigned to the nearest codeword or cluster centre whose label is equal to the watermark bit. The watermark extraction can be performed blindly. The proposed method is robust to JPEG compression and some spatial-domain processing operations. Simulation results demonstrate the effectiveness of the proposed algorithm.

  • A Note on Transformations of Interactive Proofs that Preserve the Prover's Complexity

    Satoshi HADA  

     
    PAPER-Fundamental

      Vol:
    E87-A No:1
      Page(s):
    2-9

    Goldwasser and Sipser proved that every interactive proof system can be transformed into a public-coin one (a.k.a. an Arthur-Merlin game). Unfortunately, the applicability of their transformation to cryptography is limited because it does not preserve the computational complexity of the prover's strategy. Vadhan showed that this deficiency is inherent by constructing a promise problem Π with a private-coin interactive proof that cannot be transformed into an Arthur-Merlin game such that the new prover can be implemented in polynomial-time with oracle access to the original prover. However, the transformation formulated by Vadhan has a restriction, i.e., it does not allow the new prover and verifier to look at common input. This restriction is essential for the proof of Vadhan's negative result. This paper considers an unrestricted transformation where both the new prover and verifier are allowed to access and analyze common input. We show that an analogous negative result holds even in this unrestricted case under a non-standard computational assumption.

  • Practical Design and Modeling Procedure of Test Structures for Microwave Bare-Chip Devices

    Masanori SHIMASUE  Hitoshi AOKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E87-C No:1
      Page(s):
    60-65

    This paper presents practical modeling procedure of feed patterns, bond wires, and interconnects for microwave bare-chip devices. Dedicated test structures have been designed for the process. Modeling accuracy of BJTs and diodes has been unprecedentedly improved up to 30 GHz with this procedure despite popular SPICE models were used.

  • A Generalization of Binary Zero-Correlation Zone Sequence Sets Constructed from Hadamard Matrices

    Takafumi HAYASHI  

     
    LETTER-Coding Theory

      Vol:
    E87-A No:1
      Page(s):
    286-291

    The present paper introduces a new construction of a class of binary sequence set having a zero-correlation zone (hereafter binary zcz sequence set). The cross-correlation function and the side-lobe of the auto-correlation function of the proposed sequence set is zero for the phase shifts within the zero-correlation zone. This paper shows that such a construction generates a binary zcz sequence set from an arbitrary pair of Hadamard matrices of common size. Since the proposed sequence construction generates a sequence set from an arbitrary pair of Hadamard matrices, many more types of sequence sets can be generated by the proposed sequence construction than is possible by a sequence construction that generates sequence sets from a single arbitrary Hadamard matrix.

4101-4120hit(5900hit)