1-20hit |
Hiro TAMURA Kiyoshi YANAGISAWA Atsushi SHIRANE Kenichi OKADA
This paper presents a physical layer wireless device identification method that uses a convolutional neural network (CNN) operating on a quadrant IQ transition image. This work introduces classification and detection tasks in one process. The proposed method can identify IoT wireless devices by exploiting their RF fingerprints, a technology to identify wireless devices by using unique variations in analog signals. We propose a quadrant IQ image technique to reduce the size of CNN while maintaining accuracy. The CNN utilizes the IQ transition image, which image processing cut out into four-part. An over-the-air experiment is performed on six Zigbee wireless devices to confirm the proposed identification method's validity. The measurement results demonstrate that the proposed method can achieve 99% accuracy with the light-weight CNN model with 36,500 weight parameters in serial use and 146,000 in parallel use. Furthermore, the proposed threshold algorithm can verify the authenticity using one classifier and achieved 80% accuracy for further secured wireless communication. This work also introduces the identification of expanded signals with SNR between 10 to 30dB. As a result, at SNR values above 20dB, the proposals achieve classification and detection accuracies of 87% and 80%, respectively.
Yosuke TANIGAWA Shu NISHIKORI Kazuhiko KINOSHITA Hideki TODE Takashi WATANABE
With the widespread diffusion of Internet of Things (IoT), the number of applications using wireless sensor devices are increasing, and Quality of Service (QoS) required for these applications is diversifying. Thus, it becomes difficult to satisfy a variety of QoS with a single wireless system, and many kinds of wireless systems are working in the same domains; time, frequency, and place. This paper considers coexistence environments of ZigBee and Wi-Fi networks, which use the same frequency band channels, in the same place. In such coexistence environments,ZigBee devices suffer radio interference from Wi-Fi networks, which results in severe ZigBee packet losses because the transmission power of Wi-Fi is much higher than that of ZigBee. Many existing methods to avoid interference from Wi-Fi networks focus on only one of time, frequency, or space domain. However, such avoidance in one domain is insufficient particularly in near future IoT environments where more ZigBee devices and Wi-Fi stations transfer more amount of data. Therefore, in this paper, we propose joint channel allocation and routing in both frequency and space domains. Finally, we show the effectiveness of the proposed method by computer simulation.
Kazuhiko KINOSHITA Shu NISHIKORI Yosuke TANIGAWA Hideki TODE Takashi WATANABE
Coexistence between ZigBee and Wi-Fi technologies, which operate within the same frequency band, is increasing with the widespread use of the IoT (Internet of Things). ZigBee devices suffer significant decreases in the sink arrival rate of packets in the presence of Wi-Fi interference. To overcome this problem, many channel control methods have been proposed. These methods switch only ZigBee channels to avoid interference with Wi-Fi. In contrast, we propose a cooperative channel control method for improving ZigBee packet arrival rate by controlling both the Wi-Fi and ZigBee channels. Specifically, the proposed method not only controls ZigBee devices and channels but also requests a temporary pause in the use of specific Wi-Fi channels. Finally, computer simulations show the effectiveness of the proposed method from the viewpoints of ZigBee's packet arrival rate and applications' satisfaction. In addition, the feasibility of the proposed method is also confirmed by experiments with prototyping.
Yosuke TANIGAWA Seiya DEJIMA Hideki TODE
Recently, ZigBee has been attracting attention as a low-power and short-range wireless communication standard. In ZigBee networks, it is necessary to suppress frame transfer load because ZigBee needs to operate within severe capacity constraints and with low power consumption. However, in the typical environments in which ZigBee is used, such as smart home networks, WLAN (Wireless LAN) generally coexists, and radio interference occurs between the two networks. Existing studies focused on only interference avoidance. On the other hand, in this paper, we focus on adaptive cooperation between ZigBee network and WLAN. Specifically, from the viewpoints of WLANs that have wider communication range but have many idle periods in some environments like homes, we propose and study a hop count reduction method of ZigBee frame transfer by partially employing WLAN communication to transfer ZigBee frames. To the best of our knowledge, this is the first paper that considers the adaptive cooperation between ZigBee network and WLAN, where some ZigBee frames are transferred via WLAN to the sink. This is a completely new approach different from existing interference avoidance approaches. Then, we evaluate the hop count reduction by considering the number and the positions of relay points to transfer ZigBee frames to WLAN, and ZigBee tree topology for frame transfer routes. Through the evaluation, two realistic deployment policies of the relay points are derived. Finally, as specific advantages from the hop count reduction, we demonstrate the performance improvement about sink arrival ratio and end-to-end transfer delay of ZigBee frames, and energy consumption.
Most wireless networks are specified as using the data link protocol, i.e. layer 2 (L2). Recently, IoT and big data processing have promoted the use of wireless sensor networks to connect and send data to data center applications over the Internet. To do so, the implementation of an IP stack on the wireless node, or the gateway of the IP and wireless L2 network, has been proposed. Both approaches were developed to allow applications on the IP network to access L2 wireless network nodes. However, since wireless sensor networks do not require any network protocol, an IP is not essential for collecting data. Therefore, we propose a novel bridging VPN for connecting wireless networks, in which the application and wireless end nodes are not required to acknowledge an IP address or network protocol. In this way, the IP network merely serves to transport the data link frames of wireless networks. We believe that this is another style of IoT and recommend that this VPN be used as a test bed for small IoT businesses and institutions before they start to implement an IP stack on their systems.
We present a novel receiver for reliable IoT communications. In this letter, it is assumed that IoT communications are based on ZigBee under frequency-selective indoor environments. The ZigBee includes IEEE 802.15.4 specification for low-power and low-cost communications. The presented receiver fully follows the specification. However, the specification exhibits extremely low performance under frequency-selective environments. Therefore, a channel estimation approach is proposed for reliable communications under frequency-selective fading indoor environments. The estimation method relies on FFT operations, which are usually embedded in cellular phones. We also suggest a correlation method for accurate recovery of original information. The simulation results show that the proposed receiver is very suitable for IoT communications under frequency-selective indoor environments.
Mohamed Hadi HABAEBI Mabruka Mohamed AGEL Alhareth ZYOUD
Accidental falling among elderly people has become a public health concern. Thus, there is a need for systems that detect a fall when it happens. This paper presents a portable real-time remote health monitoring system that can remotely monitor patients' movements. The system is designed and implemented using ZigBee wireless technologies, and the data is analysed using Matlab. The purpose of this research is to determine the acceleration thresholds for fall detection, using tri-axial accelerometer readings at the head, waist, and knee. Seven voluntary subjects performed purposeful falls and Activities of Daily Living (ADL). The results indicated that measurements from the waist and head can accurately detect falls; the sensitivity and reliability measurements of fall detection ranged between 80% and 90%. In contrast, the measurements showed that the knee is not a useful position for the fall detection.
Junghee HAN Jiyong HAN Dongseup LEE Changgun LEE
In this paper, we propose an utilization-aware hybrid beacon scheduling method for a large-scale IEEE 802.15.4 cluster-tree ZigBee network. The proposed method aims to enhance schedulability of a target network by better utilizing transmission medium, while avoiding inter-cluster collisions at the same time. To achieve this goal, the proposed scheduling method partially allows beacon overlaps, if appropriate. In particular, this paper answers for the following questions: 1) on which condition clusters can send overlapped beacons, 2) how to select clusters to overlap with minimizing utilization, and 3) how to adjust beacon parameters for grouped clusters. Also, we quantitatively evaluate the proposed method compared to previous works — i.e., non-beacon scheduling and a serialized beacon scheduling algorithm — from several aspects including total duty cycles, packet drop rate, and end-to-end delay.
Fumihiro INOUE Takayuki NISHIO Masahiro MORIKURA Koji YAMAMOTO Fusao NUNO Takatoshi SUGIYAMA
The problem of coexistence between IEEE 802.11g based wireless LANs (WLANs) and IEEE 802.15.4 based wireless personal area networks (WPANs) in the 2.4GHz band is an important issue for the operation of a home energy management system (HEMS) for smart grids. This paper proposes a coexistence scheme that is called a Hybrid station aided coexistence (HYSAC) scheme to solve this problem. This scheme employs a hybrid-station (H-STA) that possesses two types of network device functions. The scheme improves the data transmission quality of the WPAN devices which transmit energy management information such as power consumption. The proposed HYSAC scheme employs WLAN control frames, which are used to assign WPAN system traffic resources. Moreover, we propose a coexistence method to achieve excellent WLAN throughput where multiple WPANs coexist with a WLAN. We theoretically derive the performance of the proposed scheme by considering the QoS support in WLAN and show that the results of the simulation and theoretical analysis are in good agreement. The numerical results show that the HYSAC scheme decreases the beacon loss rate of WPAN to less than 1% when the WLAN system consists of 10 STAs under saturated traffic conditions. Furthermore, the WLAN throughput of the proposed synchronization method is shown to be 30.6% higher than that of the HYSAC scheme without synchronization when the WLAN that consists of 10 STAs coexists with four WPANs.
Security plays an important role in several ZigBee applications such as Smart Energy and medical sensor applications. For a secure communication among ZigBee devices, a secret key should be shared among any two ZigBee devices using the Key Distribution protocol. Recently, Yüksel and Nielson proposed a new Key Distribution protocol for ZigBee addressing the security weaknesses of the original ZigBee Key Distribution protocol. In this letter, it is shown that their protocol is not secure against a key de-synchronization attack, and a security-enhanced Key Distribution protocol is newly proposed and analyzed in terms of security.
Manato FUJIMOTO Hayato OZAKI Takuya SUZUKI Hiroaki KOYAMASHITA Tomotaka WADA Kouichi MUTSUURA Hiromi OKADA
Recently, the border security systems attract attention as large-scale monitoring system in wireless sensor networks (WSNs). In the border security systems whose aim is the monitoring of illegal immigrants and the information management in long-period, it deploys a lot of sensor nodes that have the communication and sensing functions in the detection area. Hence, the border security systems are necessary to reduce the power consumption of the whole system in order to extend the system lifetime and accurately monitor the track of illegal immigrants. In this paper, we propose two effective barrier coverage construction methods by switch dynamically operation modes of sensor nodes to reduce the operating time of the sensing function that wastes a lot of power consumption. We carry out performance evaluations by computer simulations to show the effectiveness of two proposed methods and show that the proposed methods are suitable for the border security systems.
Jin MITSUGI Shigeru YONEMURA Takehiro YOKOISHI
This paper proposes a device discovery method for consolidated IP and ZigBee home networks. The method broadcasts an IP multicasted device discovery request of UPnP, m-search, in the ZigBee network as a Constrained Application Protocol (CoAP) message. Upon receiving the m-search broadcast, ZigBee devices respond after a constant time delay with their device description Universal Resource Name (URN). We refer to this device discovery mechanism as transparent msearch. Transparent m-search enables reliable and swift device discovery in home networks which may include constrained networks such as ZigBee. It is revealed by an experiment with 41 ZigBee devices that the delayed response from ZigBee devices is essential to avoid collisions between m-search broadcast and responses from devices and, as a result, to secure the reliability of device discovery. Since the transparent m-search requires the receiving ZigBee devices to respond with their device description URNs, the execution time of device discovery is significantly improved. In our experiment with 41 ZigBee devices, a conventional m-search took 38.1 second to complete device discovery while that of transparent m-search took only 6.3 second.
We have developed a dedicated onboard “sensor” utilizing wireless communication devices for collision avoidance around road intersections. The “sensor” estimates the positions of transmitters on traffic participants by comparing the strengths of signals received by four ZigBee receivers installed at the four corners of a vehicle. On-board sensors involving cameras cannot detect objects in non line-of-sight (NLOS) area caused by buildings and other vehicles. Although infrastructure sensors for vehicle-to-infrastructure (V2I) cooperative systems can detect such hidden objects, they are substantially more expensive than on-board sensors. The on-board wireless “sensor” developed in this work would function as an alternative tool for collision avoidance around intersections. Herein, we extend our previous work by considering a road surface reflection model to improve the estimation accuracy. By using this model, we succeeded in reducing the error mismatches between the observed data and the calibration data of the estimation algorithm. The proposed system will be realized on the basis of these enhancements.
Currently, there are various routing methods that consider the energy in a wireless sensor environment. The algorithm we consider is a low-rate wireless personal area network, viz., 802.15.4, and ZigBee routing network. Considering, the overall organization of the network energy efficiency, we suggest a logical position exchange (LPE) algorithm between specified nodes. Logical positioning means connecting high sub-networks and low sub-networks based on the neighbor nodes information of the address ID, and depth in the ZigBee tree topology network. When one of the nodes of the tree topology network, which is responsible for connecting multiple low sub-networks and high sub-networks, has difficulty performing its important roles in the network, because of energy exhaustion, it exchanges essential information and entrusts logical positioning to another node that is capable of it. A partial change in the logical topology enhances the energy efficiency in the network.
In a ZigBee network, a finite address space is allocated to every potential parent device and a device may disallow a join request once this address space is exhausted. When a new node (child) requests to a coordinator (parent) to join a ZigBee network, the coordinator checks its address space. If it has sufficient address space, the coordinator accepts the new node as its child in the ZigBee network. If the new node has router capability (JoinAsRouter), it becomes a router in the ZigBee network. However, this association procedure makes ZigBee networks inefficient for routing, because the coordinator checks only the maximum and current numbers of child nodes. In the worst case, the network will be arranged so that the router nodes are crowded in the network. Therefore, we propose the KMCD-IME (Keeping the Maximum Communication Distance and Initial Mutual Exclusion among router nodes) algorithm with two additional conditions when a new node joins the ZigBee network. The first condition maintains the maximum communication distance between the new node and the would-be parent node. The second condition is the Initial Mutual Exclusion among router nodes. The router nodes are evenly spread across the network by KMCD-IME and an effective routing topology is formed. Therefore, the KMCD-IME algorithm extends the lifetime of the ZigBee network.
Akihiko SUGIURA Ryoichi BABA Hideyuki KOBAYASHI
With the increasing number of crimes and accidents in which children are becoming involved, there is a growing demand for devices to safeguard children's security by detecting their locations on their way to and from school. This paper proposes a system that uses an IEEE802.15.4-standard network to detect children's locations. To overcome the susceptibility of radio interference from nearby wireless LANs, frequency division multiplexing is applied to this IEEE802.15.4-based network, toward improving data acquisition from terminal units. The effectiveness of the system was field-tested with elementary school students who used about 400 IEEE 802.15.4-compliant terminal units. An experiment verified that the use of frequency division multiplexing in an environment where radio interference by wireless LANs is strong allowed the network to double the success rate of information communication from terminal units relative to that without frequency division multiplexing. In the experiment for detecting elementary schoolers' arrival at and departure from school, the terminal detection rate was 99% and the terminal detection rate on the designated school routes was 90%. These results prove the effectiveness of the system in detecting locations.
In this letter, we develop an anycast-based emergency service for healthcare wireless sensor networks. The new service could operate with sensors to detect and activate an alarm system based on predefined conditions that are specific to the patient and the disease. The new service is implemented on 802.15.4 ZigBee which usually has large control overhead and long transmission times. To improve the service performance, our service identifies the closest emergency service provider to alleviate the control overhead and achieve immediate assistance when a patient requests for an emergency service. We also increase the reliability of packet transmission by using a Recovery Point scheme. Our simulations and experiment demonstrate that our scheme is efficient and feasible for healthcare wireless sensor networks.
The architecture of ZigBee networks focuses on developing low-cost, low-speed ubiquitous communication between devices. The ZigBee technique is based on IEEE 802.15.4, which specifies the physical layer and medium access control (MAC) for a low rate wireless personal area network (LR-WPAN). Currently, numerous wireless sensor networks have adapted the ZigBee open standard to develop various services to promote improved communication quality in our daily lives. The problem of system and network reliability in providing stable services has become more important because these services will be stopped if the system and network reliability is unstable. The ZigBee standard has three kinds of networks; star, tree and mesh. The paper models the ZigBee protocol stack from the physical layer to the application layer and analyzes these layer reliability and mean time to failure (MTTF). Channel resource usage, device role, network topology and application objects are used to evaluate reliability in the physical, medium access control, network, and application layers, respectively. In the star or tree networks, a series system and the reliability block diagram (RBD) technique can be used to solve their reliability problem. However, a division technology is applied here to overcome the problem because the network complexity is higher than that of the others. A mesh network using division technology is classified into several non-reducible series systems and edge parallel systems. Hence, the reliability of mesh networks is easily solved using series-parallel systems through our proposed scheme. The numerical results demonstrate that the reliability will increase for mesh networks when the number of edges in parallel systems increases while the reliability quickly drops when the number of edges and the number of nodes increase for all three networks. More use of resources is another factor impact on reliability decreasing. However, lower network reliability will occur due to network complexity, more resource usage and complex object relationship.
Youn-Soo KIM Eun Ju LEE Bong Soo KIM Hyung Seok KIM
ZigBee recently has been used a lot in wireless sensor networks because of its low power consumption and affordable chips. However, ZigBee's existing hierarchical routing algorithm has a disadvantage in that a node may communicate with a nearby node over several hops. In this letter we propose a Quasi-Hierarchical Routing (QHR) algorithm that can improve the ZigBee hierarchical routing method's inefficiency by using brief information on neighbors within radio range. The network simulation evaluates this QHR's performance by comparing it to other ZigBee routing schemes.
Hyunggi CHO Myungseok KANG Jonghoon KIM Hagbae KIM
This paper presents a Maximum Likelihood Location Estimation (MLLE) algorithm for the home network environments. We propose a deployment of cluster-tree topology in the ZigBee networks and derive the MLE under the log-normal models for the Received Signal Strength (RSS) measurements. Experiments are also conducted to validate the effectiveness of the proposed algorithm.