The search functionality is under construction.

Keyword Search Result

[Keyword] all-optical(64hit)

1-20hit(64hit)

  • Highly Efficient Multi-Band Optical Networks with Wavelength-Selective Band Switching Open Access

    Masahiro NAKAGAWA  Hiroki KAWAHARA  Takeshi SEKI  Takashi MIYAMURA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2022/11/04
      Vol:
    E106-B No:5
      Page(s):
    416-426

    Multi-band transmission technologies promise to cost-effectively expand the capacity of optical networks by exploiting low-loss spectrum windows beyond the conventional band used in already-deployed fibers. While such technologies offer a high potential for capacity upgrades, available capacity is seriously restricted not only by the wavelength-continuity constraint but also by the signal-to-noise ratio (SNR) constraint. In fact, exploiting more bands can cause higher SNR imbalance over multiple bands, which is mainly due to stimulated Raman scattering. To relax these constraints, we propose wavelength-selective band switching-enabled networks (BSNs), where each wavelength channel can be freely switched to any band and in any direction at any optical node on the route. We also present two typical optical node configurations utilizing all-optical wavelength converters, which can realize the switching proposal. Moreover, numerical analyses clarify that our BSN can reduce the fiber resource requirements by more than 20% compared to a conventional multi-band network under realistic conditions. We also discuss the impact of physical-layer performance of band switching operations on available benefits to investigate the feasibility of BSNs. In addition, we report on a proof-of-concept demonstration of a BSN with a prototype node, where C+L-band wavelength-division-multiplexed 112-Gb/s dual-polarization quadrature phase-shift keying signals are successfully transmitted while the bands of individual channels are switched node-by-node for up to 4 cascaded nodes.

  • All-Optical PAM4 to 16QAM Modulation Format Conversion Using Nonlinear Optical Loop Mirror and 1:2 Coupler Open Access

    Yuta MATSUMOTO  Ken MISHINA  Daisuke HISANO  Akihiro MARUTA  

     
    PAPER

      Pubricized:
    2020/05/14
      Vol:
    E103-B No:11
      Page(s):
    1272-1281

    In inter-data center networks where high transmission capacity and spectral efficiency are required, a 16QAM format is deployed. On the other hand, in intra-data center networks, a PAM4 format is deployed to meet the demand for a simple and low-cost transceiver configuration. For a seamless and effective connection of such heterogeneous networks without using optical-electrical-optical conversion, an all-optical modulation format conversion technique is required. In this paper, we propose an all-optical PAM4 to 16QAM modulation format conversion using nonlinear optical loop mirror. The successful conversion operation from 2 × 26.6-Gbaud PAM4 signals to a 100-Gbps class 16QAM signal is verified by numerical simulation. Compared with an ideal 16QAM signal, the power penalty of the converted 16QAM signal can be kept within 0.51dB.

  • Remote Pumped All Optical Wavelength Converter for Metro-Core Photonic Networks

    Ryota TSUJI  Daisuke HISANO  Ken MISHINA  Akihiro MARUTA  

     
    PAPER

      Pubricized:
    2020/05/20
      Vol:
    E103-B No:11
      Page(s):
    1282-1290

    Wavelength division multiplexing (WDM) scheme is used widely in photonic metro-core networks. In a WDM network, wavelength continuity constraint is employed to simply construct relay nodes. This constraint reduces the wavelength usage efficiency of each link. To improve the same, an all-optical wavelength converter (AO-WC) has been attracting attention in recent years. In particular, an AO-WC is a key device because it enables simultaneous conversion of multiple wavelengths of signal lights to other wavelengths, independent of the modulation format. However, each AO-WC requires installation of multiple laser sources with narrow bandwidth because the lights emitted by the laser sources are used as pump lights when the wavelengths of the signal lights are converted by the four-wave mixing (FWM) process. To reduce the number of laser sources, we propose a remote pumped AO-WC, in which the laser sources of the pump lights are aggregated into several relay nodes. When the request for the wavelength conversion from the relay node without the laser source is conveyed, the relay node with the laser source transmits the pump light through the optical link. The proposed scheme enables reduction in the number of laser sources of the pump lights. Herein we analyze the distortion of the pump light by propagating it through the optical link We also evaluate the effect of the noise in optical amplifiers and nonlinearities in optical fibers using numerical simulations employing the representative parameters for a practical WDM network.

  • All-Optical Modulation Format Conversion and Applications in Future Photonic Networks Open Access

    Ken MISHINA  Daisuke HISANO  Akihiro MARUTA  

     
    INVITED PAPER

      Vol:
    E102-C No:4
      Page(s):
    304-315

    A number of all-optical signal processing schemes based on nonlinear optical effects have been proposed and demonstrated for use in future photonic networks. Since various modulation formats have been developed for optical communication systems, all-optical converters between different modulation formats will be a key technology to connect networks transparently and efficiently. This paper reviews our recent works on all-optical modulation format conversion technologies in order to highlight the fundamental principles and applications in variety of all-optical signal processing schemes.

  • One to Six Wavelength Multicasting of RZ-OOK Based on Picosecond-Width-Tunable Pulse Source with Distributed Raman Amplification

    Irneza ISMAIL  Quang NGUYEN-THE  Motoharu MATSUURA  Naoto KISHI  

     
    PAPER-Advanced Photonics

      Vol:
    E98-C No:8
      Page(s):
    816-823

    All-optical 1-to-6 wavelength multicasting of a 10-Gb/s picosecond-tunable-width converted return-to-zero (RZ)-on-off-keying (OOK) data signal using a wideband-parametric pulse source from a distributed Raman amplifier (DRA) is experimentally demonstrated. Width-tunable wavelength multicasting within the C-band with approximately 40.6-nm of separation with various compressed RZ data signal inputs have been proposed and demonstrated. The converted multicast pulse widths can be flexibly controlled down to 2.67 ps by tuning the Raman pump powers of the DRA. Nearly equal pulse widths at all multicast wavelengths are obtained. Furthermore, wide open eye patterns and penalties less than 1.2 dB at the 10-9 bit-error-rate (BER) level are found.

  • Optical Flip-Flop Operation in Orthogonal Polarization States with a Single Semiconductor Optical Amplifier and Two Feedback Loops

    Kenta TAKASE  Rie UEHARA  Nobuo GOTO  Shin-ichiro YANAGIYA  

     
    PAPER

      Vol:
    E97-C No:7
      Page(s):
    767-772

    An optical flip-flop circuit with a single semiconductor optical amplifier (SOA) using two orthogonal polarization states is proposed. The optical set / reset input and output signals are at a single wavelength. The flip-flop circuit consists of an SOA, a polarization combiner, a polarization splitter, two directional couplers, and two phase shifters. No continuous light source is required to operate the circuit. In this paper, we theoretically analyze the operation performance. Polarization dependence in SOA is considered in the analysis at a single wavelength operation, and numerically simulated results are presented. We confirm that the flip-flop circuit with a feedback-loop length of 15~mm can be operated at switching time of around 3~ns by 1~ns set / reset pulses. The flip-flop performance is discussed from viewpoints of transient overshoot and contrast at the steady on-off states.

  • All-Optical Monitoring Path Computation Using Lower Bounds of Required Number of Paths

    Nagao OGINO  Hajime NAKAMURA  

     
    PAPER-Network

      Vol:
    E95-B No:8
      Page(s):
    2576-2585

    To reduce the cost of fault management in all-optical networks, it is a promising approach to detect the degradation of optical signal quality solely at the terminal points of all-optical monitoring paths. The all-optical monitoring paths must be routed so that all single-link failures can be localized using route information of monitoring paths where signal quality degradation is detected. However, route computation for the all-optical monitoring paths that satisfy the above condition is time consuming. This paper proposes a procedure for deriving the lower bounds of the required number of monitoring paths to localize all single-link failures, and proposes an efficient monitoring path computation method based on the derived lower bounds. The proposed method repeats the route computation for the monitoring paths until feasible routes can be found, while the assumed number of monitoring paths increases, starting from the lower bounds. With the proposed method, the minimum number of monitoring paths with the overall shortest routes can be obtained quickly by solving several small-scale integer linear programming problems when the possible terminal nodes of monitoring paths are arbitrarily given. Thus, the proposed method can minimize the required number of monitors for detecting the degradation of signal quality and the total overhead traffic volume transferred through the monitoring paths.

  • Nanophotonics Based on Semiconductor-Photonic Crystal/Quantum Dot and Metal-/Semiconductor-Plasmonics Open Access

    Kiyoshi ASAKAWA  Yoshimasa SUGIMOTO  Naoki IKEDA  Daiju TSUYA  Yasuo KOIDE  Yoshinori WATANABE  Nobuhiko OZAKI  Shunsuke OHKOUCHI  Tsuyoshi NOMURA  Daisuke INOUE  Takayuki MATSUI  Atsushi MIURA  Hisayoshi FUJIKAWA  Kazuo SATO  

     
    INVITED PAPER

      Vol:
    E95-C No:2
      Page(s):
    178-187

    This paper reviews our recent activities on nanophotonics based on a photonic crystal (PC)/quantum dot (QD)-combined structure for an all-optical device and a metal/semiconductor composite structure using surface plasmon (SP) and negative refractive index material (NIM). The former structure contributes to an ultrafast signal processing component by virtue of new PC design and QD selective-area-growth technologies, while the latter provides a new RGB color filter with a high precision and optical beam-steering device with a wide steering angle.

  • All-Optical Flip-Flop Based on Coupled-Mode DBR Laser Diode for Optically Clocked Operation

    Masaru ZAITSU  Akio HIGO  Takuo TANEMURA  Yoshiaki NAKANO  

     
    PAPER

      Vol:
    E95-C No:2
      Page(s):
    218-223

    A novel type of optically clocked all-optical flip-flop based on a coupled-mode distributed Bragg reflector laser diode is proposed. The device operates as a bistable laser, where the two lasing modes at different wavelength are switched all-optically by injecting a clock pulse together with a set/reset signal. We employ an analytical model based on the two-mode coupled rate equations to verify the basic operation of the device numerically. Optically clocked flip-flop operation is obtained with a set/reset power of 0.60 mW and clock power of 1.8 mW. The device features simple structure, small footprint, and synchronized all-optical flip-flop operation, which should be attractive in the future digital photonic integrated circuits.

  • Monolithically Integrated Wavelength-Routing Switch Using Tunable Wavelength Converters with Double-Ring-Resonator Tunable Lasers Open Access

    Toru SEGAWA  Shinji MATSUO  Takaaki KAKITSUKA  Yasuo SHIBATA  Tomonari SATO  Yoshihiro KAWAGUCHI  Yasuhiro KONDO  Ryo TAKAHASHI  

     
    PAPER-Optoelectronics

      Vol:
    E94-C No:9
      Page(s):
    1439-1446

    We present an 88 wavelength-routing switch (WRS) that monolithically integrates tunable wavelength converters (TWCs) and an 88 arrayed-waveguide grating. The TWC consists of a double-ring-resonator tunable laser (DRR TL) allowing rapid and stable switching and a semiconductor-optical-amplifier-based optical gate. Two different types of dry-etched mirrors form the laser cavity of the DRR TL, which enable integration of the optical components of the WRS on a single chip. The monolithic WRS performed 18 high-speed wavelength routing of a non-return-to-zero signal at 10 Gbit/s. The switching operation was demonstrated by simultaneously using two adjacent TWCs.

  • Distance-Adaptive Path Allocation in Elastic Optical Path Networks Open Access

    Bartlomiej KOZICKI  Hidehiko TAKARA  Takafumi TANAKA  Yoshiaki SONE  Akira HIRANO  Kazushige YONENAGA  Masahiko JINNO  

     
    PAPER

      Vol:
    E94-B No:7
      Page(s):
    1823-1830

    We describe a concept and realization of distance-adaptive (DA) resource allocation in spectrum-sliced elastic optical path network (SLICE). We modify the modulation format and cross-connection bandwidth of individual fixed-bit rate optical paths to optimize performance with respect to transmission distance. The shorter paths are allocated a smaller amount of resources which allows reducing the spectrum occupied by the channel. We show in calculation a reduction in required spectral resources of more than 60% when compared to the traditional traffic allocation schemes based on ITU-T grid. The concept is verified experimentally.

  • All-Optical NRZ-to-RZ Data Format Conversion with Picosecond Duration-Tunable and Pedestal Suppressed Operations

    Quang NGUYEN-THE  Motoharu MATSUURA  Hung NGUYEN TAN  Naoto KISHI  

     
    PAPER

      Vol:
    E94-C No:7
      Page(s):
    1160-1166

    We demonstrate an all-optical picosecond pulse duration-tunable nonreturn-to-zero (NRZ)-to-return-to-zero (RZ) data format conversion using a Raman amplifier-based compressor and a fiber-based four-wave mixing (FWM) switch. A NRZ data signal is injected into the fiber-based FWM switch (AND gate) with a compressed RZ clock by the Raman amplifier-based compressor, and convert to RZ data signal by the fiber-based FWM switch. The compressed RZ clock train acts as a pump signal in the fiber-based FWM switch to perform the NRZ-to-RZ data format conversion. By changing the Raman pump power of the Raman amplifier-based compressor, it is possible to tune the pulse duration of the converted RZ data signal from 15 ps to 2 ps. In all the tuning range, the receiver sensitivity at bit error rate (BER) of 10-9 for the converted RZ data signal was about 1.31.7 dB better than the receiver sensitivity of the input NRZ data signal. Moreover, the pulse pedestal of the converted RZ data signals is well suppressed owing to the FWM process in the fiber-based FWM switch.

  • 10-Gb/s Optical Buffer Memory Using a Polarization Bistable VCSEL

    Takashi MORI  Yuuki SATO  Hitoshi KAWAGUCHI  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E92-C No:7
      Page(s):
    957-963

    Optical buffer memory for 10-Gb/s data signal is demonstrated experimentally using a polarization bistable vertical-cavity surface-emitting laser (VCSEL). The optical buffer memory is based on an optical AND gate function and the polarization bistability of the VCSEL. Fast AND gate operation responsive to 50-ps-width optical pulses is achieved experimentally by increasing the detuning frequency between an injection light into the VCSEL and a lasing light from the VCSEL. A specified bit is extracted from the 10-Gb/s data signal by the fast AND gate operation and is stored as the polarization state of the VCSEL by the polarization bistability. The corresponding numerical simulations are also performed using two-mode rate equations taking into account the detuning frequency. The simulation results confirm the fast AND gate operation by increasing the detuning frequency as well as the experimental results.

  • All-Optical Demultiplexing from 160 to 40/80 Gb/s Using Mach-Zehnder Switches Based on Intersubband Transition of InGaAs/AlAsSb Coupled Double Quantum Wells Open Access

    Ryoichi AKIMOTO  Guangwei CONG  Masanori NAGASE  Teruo MOZUME  Hidemi TSUCHIDA  Toshifumi HASAMA  Hiroshi ISHIKAWA  

     
    INVITED PAPER

      Vol:
    E92-C No:2
      Page(s):
    187-193

    We demonstrated all-optical demultiplexing of 160-Gb/s signal to 40- and 80-Gb/s by a Mach-Zehnder Interferometric all-optical switch, where the picosecond cross-phase modulation (XPM) induced by intersubband excitation in InGaAs/AlAsSb coupled double quantum wells is utilized. A bi-directional pump configuration, i.e., two control pulses are injected from both sides of a waveguide chip simultaneously, increases a nonlinear phase shift twice in comparison with injection of single pump beam with forward- and backward direction. The bi-directional pump configuration is the effective way to avoid damaging waveguide facets in the case where high optical power of control pulse is necessary to be injected for optical gating at repetition rate of 40/80 GHz. Bit error rate (BER) measurements on 40-Gb/s demultiplexed signal show that the power penalty is decreased slightly for the bi-directional pump case in the BER range less than 10-6. The power penalty is 1.3 dB at BER of 10 - 9 for the bi-directional pump case, while it increases by 0.3-0.6 dB for single pump cases. A power penalty is influenced mainly by signal attenuation at "off" state due to the insufficient nonlinear phase shift, upper limit of which is constrained by the current low XPM efficiency of 0.1 rad/pJ and the damage threshold power of 100 mW in a waveguide facet.

  • Simultaneous Tunable Wavelength Conversion and Power Amplification Using a Pump-Modulated Wide-Band Fiber Optical Parametric Amplifier

    Guo-Wei LU  Kazi Sarwar ABEDIN  Tetsuya MIYAZAKI  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E91-B No:11
      Page(s):
    3712-3714

    We propose and experimentally demonstrate an all-optical broadband wavelength conversion scheme with simultaneous power amplification based on a pump-modulated fiber optic parametric amplifier (FOPA). All-optical tunable wavelength conversion from one to two wavelengths was achieved with ≥13 dB extinction ratio and <2.7-dB power penalty, accompanied by a high (≥37 dB) and flat ( 3 dB variation) FOPA gain spectrum over 47 nm.

  • All-Optical Label Recognition Using Self-Routing Architecture of Mach-Zehnder Interferometer Optical Switches with Semiconductor Optical Amplifiers

    Hitoshi HIURA  Nobuo GOTO  

     
    PAPER-Optoelectronics

      Vol:
    E90-C No:8
      Page(s):
    1619-1626

    We propose a new label recognition system for photonic label switching using self-routing of labels. Binary-coded labels in on-off keying format are considered. The system consists of an all-optical demultiplexer (DeMUX) and an address recognition unit (ARU) consisting of tree-structured switches. The system uses self-routing propagation of an indication bit controlled with address bits. The indication bit is placed in advance of the address bits in the label. In DeMUX, all-optical switches in a configuration of Mach-Zehnder interferometer with semiconductor optical amplifiers (SOA-MZI) are controlled by the indication bit pulse to separate each of the label bits. The indication bit pulse is routed to the destination output port corresponding to the code of the address in ARU. It is shown that all the binary number codes can be recognized with this system. The operation principle is verified by numerical simulation using coupled-mode theory and a rate equation. Moreover, the switching crosstalk is also evaluated.

  • All Optical Analog-to-Digital Conversion by Polarization Modulation Using Nonlinear Phase Shift

    Yoshitomo SHIRAMIZU  Nobuo GOTO  

     
    PAPER-Optoelectronics

      Vol:
    E90-C No:4
      Page(s):
    856-864

    All optical analog-to-digital converter consisting of an optical polarization modulator using nonlinear phase shift and switches based on polarization is proposed. The principle of operation is discussed using Jones matrix. Optical polarization states through the system and limit of resolution are evaluated. The resolution is optimized by maintaining the polarization state in the converter and refining the polarization of incident sampling signal. Parallel usage of converter modules is proposed to increase the dynamic range, where cyclic nature of optical phase plays an important roll. Application to photonic routing of our converter is also proposed.

  • All-Optical Analog-to-Digital Conversion Using Optical Delay Line Encoders

    Takashi NISHITANI  Tsuyoshi KONISHI  Kazuyoshi ITOH  

     
    LETTER

      Vol:
    E90-C No:2
      Page(s):
    479-480

    We propose and demonstrate the all-optical analog-to-digital conversion (ADC) using optical delay line encoders. Experimental results show that input analog signals are successfully converted into 3-bit digital signals at a bit rate of 40 Gb/s.

  • Simultaneous Frequency Conversion Technique Utilizing an SOA-MZI for Full-Duplex WDM Radio over Fiber Applications

    Jong-In SONG  Ho-Jin SONG  

     
    INVITED PAPER

      Vol:
    E90-C No:2
      Page(s):
    351-358

    Simultaneous all-optical frequency up/downconversion technique utilizing a single semiconductor optical amplifier Mach-Zehnder interferometer (SOA-MZI) for full-duplex WDM radio over fiber (RoF) applications is presented. Using this technique, error-free simultaneous upconversion and downconversion of RoF signals with a finite-length single mode fiber were experimentally demonstrated. The results show the potential of the proposed scheme for use in a cost-effective full-duplex WDM RoF link.

  • Modified NOLM for Stable and Improved 2R Operation at Ultra-High Bit Rates

    Shin ARAHIRA  Hitoshi MURAI  Yoh OGAWA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E89-B No:12
      Page(s):
    3296-3305

    A nonlinear optical fiber loop mirror (NOLM) adapted for all-optical 2R operation at ultrahigh bit-rates was experimentally and theoretically investigated. The proposed NOLM was created by adding inline/external fiber polarizers and also an inline optical phase-bias compensator (OPBC) to a standard NOLM. A theoretical investigation revealed that the operation of the standard NOLM became unstable due to residual polarization crosstalk of the polarization-maintaining optical components making up the NOLM, and that it could be dramatically improved with the inline/external polarizers. The NOLM with the polarizers ensured stable switching operation with high switching-dynamic-range (>30 dB) against the change of the wavelength of the input clock pulses, and the change of the environment temperature. We also experimentally verified that the OPBC played a dramatic role to ensure excellent dynamic switching performance of the NOLM, and to achieve signal-Q-recovery of the regenerated signals. All optical 2R experiments at 40 Gb/s and 160 Gb/s were performed with the modified NOLM. Signal regeneration with improved extinction ratio and signal Q value was successfully demonstrated. Q-recovery to the input of the control pulses degraded with ASE noise accumulation was also successfully achieved.

1-20hit(64hit)