The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] authenticated(47hit)

1-20hit(47hit)

  • Generic Construction of Public-Key Authenticated Encryption with Keyword Search Revisited

    Keita EMURA  

     
    PAPER

      Pubricized:
    2023/09/12
      Vol:
    E107-A No:3
      Page(s):
    260-274

    Public key authenticated encryption with keyword search (PAEKS) has been proposed, where a sender's secret key is required for encryption, and a trapdoor is associated with not only a keyword but also the sender. This setting allows us to prevent information leakage of keyword from trapdoors. Liu et al. (ASIACCS 2022) proposed a generic construction of PAEKS based on word-independent smooth projective hash functions (SPHFs) and PEKS. In this paper, we propose a new generic construction of PAEKS, which is more efficient than Liu et al.'s in the sense that we only use one SPHF, but Liu et al. used two SPHFs. In addition, for consistency we considered a security model that is stronger than Liu et al.'s. Briefly, Liu et al. considered only keywords even though a trapdoor is associated with not only a keyword but also a sender. Thus, a trapdoor associated with a sender should not work against ciphertexts generated by the secret key of another sender, even if the same keyword is associated. That is, in the previous definitions, there is room for a ciphertext to be searchable even though the sender was not specified when the trapdoor is generated, that violates the authenticity of PAKES. Our consistency definition considers a multi-sender setting and captures this case. In addition, for indistinguishability against chosen keyword attack (IND-CKA) and indistinguishability against inside keyword guessing attack (IND-IKGA), we use a stronger security model defined by Qin et al. (ProvSec 2021), where an adversary is allowed to query challenge keywords to the encryption and trapdoor oracles. We also highlight several issues associated with the Liu et al. construction in terms of hash functions, e.g., their construction does not satisfy the consistency that they claimed to hold.

  • Post-Quantum Anonymous One-Sided Authenticated Key Exchange without Random Oracles

    Ren ISHIBASHI  Kazuki YONEYAMA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/03/13
      Vol:
    E106-A No:9
      Page(s):
    1141-1163

    Authenticated Key Exchange (AKE) is a cryptographic protocol to share a common session key among multiple parties. Usually, PKI-based AKE schemes are designed to guarantee secrecy of the session key and mutual authentication. However, in practice, there are many cases where mutual authentication is undesirable such as in anonymous networks like Tor and Riffle, or difficult to achieve due to the certificate management at the user level such as the Internet. Goldberg et al. formulated a model of anonymous one-sided AKE which guarantees the anonymity of the client by allowing only the client to authenticate the server, and proposed a concrete scheme. However, existing anonymous one-sided AKE schemes are only known to be secure in the random oracle model. In this paper, we propose generic constructions of anonymous one-sided AKE in the random oracle model and in the standard model, respectively. Our constructions allow us to construct the first post-quantum anonymous one-sided AKE scheme from isogenies in the standard model.

  • Adaptive-ID Secure Hierarchical ID-Based Authenticated Key Exchange under Standard Assumptions without Random Oracles

    Ren ISHIBASHI  Kazuki YONEYAMA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/03/24
      Vol:
    E105-A No:9
      Page(s):
    1252-1269

    Hierarchical ID-based authenticated key exchange (HID-AKE) is a cryptographic protocol to establish a common session key between parties with authentication based on their IDs with the hierarchical delegation of key generation functionality. All existing HID-AKE schemes are selective ID secure, and the only known standard model scheme relies on a non-standard assumption such as the q-type assumption. In this paper, we propose a generic construction of HID-AKE that is adaptive ID secure in the HID-eCK model (maximal-exposure-resilient security model) without random oracles. One of the concrete instantiations of our generic construction achieves the first adaptive ID secure HID-AKE scheme under the (standard) k-lin assumption in the standard model. Furthermore, it has the advantage that the computational complexity of pairing and exponentiation operations and the communication complexity do not depend on the depth of the hierarchy. Also, the other concrete instantiation achieves the first HID-AKE scheme based on lattices (i.e., post-quantum).

  • Provable-Security Analysis of Authenticated Encryption Based on Lesamnta-LW in the Ideal Cipher Model

    Shoichi HIROSE  Hidenori KUWAKADO  Hirotaka YOSHIDA  

     
    PAPER

      Pubricized:
    2021/07/08
      Vol:
    E104-D No:11
      Page(s):
    1894-1901

    Hirose, Kuwakado and Yoshida proposed a nonce-based authenticated encryption scheme Lae0 based on Lesamnta-LW in 2019. Lesamnta-LW is a block-cipher-based iterated hash function included in the ISO/IEC 29192-5 lightweight hash-function standard. They also showed that Lae0 satisfies both privacy and authenticity if the underlying block cipher is a pseudorandom permutation. Unfortunately, their result implies only about 64-bit security for instantiation with the dedicated block cipher of Lesamnta-LW. In this paper, we analyze the security of Lae0 in the ideal cipher model. Our result implies about 120-bit security for instantiation with the block cipher of Lesamnta-LW.

  • Strongly Secure Identity-Based Key Exchange with Single Pairing Operation

    Junichi TOMIDA  Atsushi FUJIOKA  Akira NAGAI  Koutarou SUZUKI  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    58-68

    This paper proposes an id-eCK secure identity-based authenticated key exchange (ID-AKE) scheme, where the id-eCK security implies that a scheme resists against leakage of all combinations of master, static, and ephemeral secret keys except ones trivially break the security. Most existing id-eCK secure ID-AKE schemes require two symmetric pairing operations or a greater number of asymmetric pairing, which is faster than symmetric one, operations to establish a session key. However, our scheme is realized with a single asymmetric pairing operation for each party, and this is an advantage in efficiency. The proposed scheme is based on the ID-AKE scheme by McCullagh and Barreto, which is vulnerable to an active attack. To achieve id-eCK security, we apply the HMQV construction and the NAXOS technique to the McCullagh-Barreto scheme. The id-eCK security is proved under the external Diffie-Hellman for target group assumption and the q-gap-bilinear collision attack assumption.

  • Password-Based Authenticated Key Exchange without Centralized Trusted Setup

    Kazuki YONEYAMA  

     
    PAPER-cryptography

      Vol:
    E103-A No:10
      Page(s):
    1142-1156

    Almost all existing password-based authenticated key exchange (PAKE) schemes achieve concurrent security in the standard model by relying on the common reference string (CRS) model. A drawback of the CRS model is to require a centralized trusted authority in the setup phase; thus, passwords of parties may be revealed if the authority ill-uses trapdoor information of the CRS. There are a few secure PAKE schemes in the plain model, but, these are not achievable in a constant round (i.e., containing a linear number of rounds). In this paper, we discuss how to relax the setup assumption for (constant round) PAKE schemes. We focus on the multi-string (MS) model that allows a number of authorities (including malicious one) to provide some reference strings independently. The MS model is a more relaxed setup assumption than the CRS model because we do not trust any single authority (i.e., just assuming that a majority of authorities honestly generate their reference strings). Though the MS model is slightly restrictive than the plain model, it is very reasonable assumption because it is very easy to implement. We construct a (concurrently secure) three-move PAKE scheme in the MS model (justly without random oracles) based on the Groce-Katz PAKE scheme. The main ingredient of our scheme is the multi-string simulation-extractable non-interactive zero-knowledge proof that provides both the simulation-extractability and the extraction zero-knowledge property even if minority authorities are malicious. This work can be seen as a milestone toward constant round PAKE schemes in the plain model.

  • Security Analysis and Countermeasures of an End-to-End Encryption Scheme of LINE

    Takanori ISOBE  Kazuhiko MINEMATSU  

     
    PAPER-Cryptography and Information Security

      Vol:
    E103-A No:1
      Page(s):
    313-324

    In this paper, we analyze the security of an end-to-end encryption scheme (E2EE) of LINE, a.k.a Letter Sealing. LINE is one of the most widely-deployed instant messaging applications, especially in East Asia. By a close inspection of their protocols, we give several attacks against the message integrity of Letter Sealing. Specifically, we propose forgery and impersonation attacks on the one-to-one message encryption and the group message encryption. All of our attacks are feasible with the help of an end-to-end adversary, who has access to the inside of the LINE server (e.g. service provider LINE themselves). We stress that the main purpose of E2EE is to provide a protection against the end-to-end adversary. In addition, we found some attacks that even do not need the help of E2E adversary, which shows a critical security flaw of the protocol. Our results reveal that the E2EE scheme of LINE do not sufficiently guarantee the integrity of messages compared to the state-of-the-art E2EE schemes such as Signal, which is used by WhatApp and Facebook Messenger. We also provide some countermeasures against our attacks. We have shared our findings with LINE corporation in advance. The LINE corporation has confirmed our attacks are valid as long as the E2E adversary is involved, and officially recognizes our results as a vulnerability of encryption break.

  • Provably Secure Gateway Threshold Password-Based Authenticated Key Exchange Secure against Undetectable On-Line Dictionary Attack

    Yukou KOBAYASHI  Naoto YANAI  Kazuki YONEYAMA  Takashi NISHIDE  Goichiro HANAOKA  Kwangjo KIM  Eiji OKAMOTO  

     
    PAPER-Cryptography and Information Security

      Vol:
    E100-A No:12
      Page(s):
    2991-3006

    By using Password-based Authenticated Key Exchange (PAKE), a server can authenticate a user who has only the same password shared with the server in advance and establish a session key with the user simultaneously. However, in the real applications, we may have a situation where a user needs to share a session key with server A, but the authentication needs to be done by a different server B that shares the password with the user. Further, to achieve higher security on the server side, it may be required to make PAKE tolerant of a server breach by having multiple authentication servers. To deal with such a situation, Abdalla et al. proposed a variant of PAKE called Gateway Threshold PAKE (GTPAKE) where a gateway corresponds to the aforementioned server A being an on-line service provider and also a potential adversary that may try to guess the passwords. However, the schemes of Abdalla et al. turned out to be vulnerable to Undetectable On-line Dictionary Attack (UDonDA). In this paper, we propose the first GTPAKE provably secure against UDonDA, and in the security analysis, we prove that our GTPAKE is secure even if an adversary breaks into parts of multiple authentication servers.

  • Certificateless Key Agreement Protocols under Strong Models

    Denise H. GOYA  Dionathan NAKAMURA  Routo TERADA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E99-A No:10
      Page(s):
    1822-1832

    Two new authenticated key agreement protocols in the certificateless setting are presented in this paper. Both are proved secure in the extended Canetti-Krawczyk model, under the BDH assumption. The first one is more efficient than the Lippold et al.'s (LBG) protocol, and is proved secure in the same security model. The second protocol is proved secure under the Swanson et al.'s security model, a weaker model. As far as we know, our second proposed protocol is the first one proved secure in the Swanson et al.'s security model. If no pre-computations are done, the first protocol is about 26% faster than LBG, and the second protocol is about 49% faster than LBG, and about 31% faster than the first one. If pre-computations of some operations are done, our two protocols remain faster.

  • Practical Forgeries and Distinguishers against PAES

    Jérémy JEAN  Ivica NIKOLIC  Yu SASAKI  Lei WANG  

     
    PAPER

      Vol:
    E99-A No:1
      Page(s):
    39-48

    We present two practical attacks on the CAESAR candidate PAES. The first attack is a universal forgery for any plaintext with at least 240 bytes. It works for the nonce-repeating variant of PAES and in a nutshell it is a state recovery based on solving differential equations for the S-Box leaked through the ciphertext that arise when the plaintext has a certain difference. We show that to produce the forgery based on this method the attacker needs only 211 time and data. The second attack is a distinguisher for 264 out of 2128 keys that requires negligible complexity and only one pair of known plaintext-ciphertext. The attack is based on the lack of constants in the initialization of the PAES which allows to exploit the symmetric properties of the keyless AES round. Both of our attacks contradict the security goals of PAES.

  • Optimality of Tweak Functions in CLOC

    Hayato KOBAYASHI  Kazuhiko MINEMATSU  Tetsu IWATA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E98-A No:10
      Page(s):
    2152-2164

    An Authenticated Encryption scheme is used to guarantee both privacy and authenticity of digital data. At FSE 2014, an authenticated encryption scheme called CLOC was proposed. CLOC is designed to handle short input data efficiently without needing heavy precomputation nor large memory. This is achieved by making various cases of different treatments in the encryption process depending on the input data. Five tweak functions are used to handle the conditional branches, and they are designed to satisfy 55 differential probability constraints, which are used in the security proof of CLOC. In this paper, we show that all these 55 constraints are necessary. This shows the design optimality of the tweak functions in CLOC in that the constraints cannot be relaxed, and hence the specification of the tweak functions cannot be simplified.

  • An Offline Dictionary Attack against Abdalla and Pointcheval's Key Exchange in the Password-Only Three-Party Setting

    Junghyun NAM  Kim-Kwang Raymond CHOO  Juryon PAIK  Dongho WON  

     
    LETTER-Cryptography and Information Security

      Vol:
    E98-A No:1
      Page(s):
    424-427

    Although password-only authenticated key exchange (PAKE) in the three-party setting has been widely studied in recent years, it remains a challenging area of research. A key challenge in designing three-party PAKE protocols is to prevent insider dictionary attacks, as evidenced by the flaws discovered in many published protocols. In this letter, we revisit Abdalla and Pointcheval's three-party PAKE protocol from FC 2005 and demonstrate that this protocol, named 3PAKE, is vulnerable to a previously unpublished insider offline dictionary attack. Our attack is dependant on the composition of 3PAKE and the higher-level protocol that uses the established session key.

  • Compact Authenticated Key Exchange from Bounded CCA-Secure KEM

    Kazuki YONEYAMA  

     
    PAPER-Public Key Based Cryptography

      Vol:
    E98-A No:1
      Page(s):
    132-143

    How to reduce communication complexity is a common important issue to design cryptographic protocols. This paper focuses on authenticated key exchange (AKE). Several AKE schemes have been studied, which satisfy strong security such as exposure-resilience in the standard model (StdM). However, there is a large gap on communication costs between schemes in the StdM and in the random oracle model. In this paper, we show a generic construction that is significantly compact (i.e., small communication cost) and secure in the StdM. We follow an existing generic construction from key encapsulated mechanism (KEM). Our main technique is to use a bounded chosen-ciphertext secure KEM instead of an ordinary chosen-ciphertext secure KEM. The communication cost can be reduced to half by this technique, and we achieve the most compact AKE scheme in the StdM. Moreover, our construction has instantiations under wider classes of hardness assumptions (e.g., subset-sum problems and multi-variate quadratic systems) than existing constructions. This work pioneers the first meaningful application of bounded chosen-ciphertext secure KEM.

  • Exposure-Resilient One-Round Tripartite Key Exchange without Random Oracles

    Koutarou SUZUKI  Kazuki YONEYAMA  

     
    PAPER

      Vol:
    E97-A No:6
      Page(s):
    1345-1355

    This paper studies Tripartite Key Exchange (3KE) which is a special case of Group Key Exchange. Though general one-round GKE satisfying advanced security properties such as forward secrecy and maximal-exposure-resilience (MEX-resilience) is not known, it can be efficiently constructed with the help of pairings in the 3KE case. In this paper, we introduce the first one-round 3KE which is MEX-resilient in the standard model, though existing one-round 3KE schemes are proved in the random oracle model (ROM), or not MEX-resilient. Each party broadcasts 4 group elements, and executes 14 pairing operations. Complexity is only three or four times larger in computation and communication than the existing most efficient MEX-resilient 3KE scheme in the ROM; thus, our protocol is adequately practical.

  • Practical and Exposure-Resilient Hierarchical ID-Based Authenticated Key Exchange without Random Oracles

    Kazuki YONEYAMA  

     
    PAPER

      Vol:
    E97-A No:6
      Page(s):
    1335-1344

    ID-based authenticated key exchange (ID-AKE) is a cryptographic tool to establish a common session key between parties with authentication based on their IDs. If IDs contain some hierarchical structure such as an e-mail address, hierarchical ID-AKE (HID-AKE) is especially suitable because of scalability. However, most of existing HID-AKE schemes do not satisfy advanced security properties such as forward secrecy, and the only known strongly secure HID-AKE scheme is inefficient. In this paper, we propose a new HID-AKE scheme which achieves both strong security and efficiency. We prove that our scheme is eCK-secure (which ensures maximal-exposure-resilience including forward secrecy) without random oracles, while existing schemes is proved in the random oracle model. Moreover, the number of messages and pairing operations are independent of the hierarchy depth; that is, really scalable and practical for a large-system.

  • Bitstream Protection in Dynamic Partial Reconfiguration Systems Using Authenticated Encryption

    Yohei HORI  Toshihiro KATASHITA  Hirofumi SAKANE  Kenji TODA  Akashi SATOH  

     
    PAPER-Computer System

      Vol:
    E96-D No:11
      Page(s):
    2333-2343

    Protecting the confidentiality and integrity of a configuration bitstream is essential for the dynamic partial reconfiguration (DPR) of field-programmable gate arrays (FPGAs). This is because erroneous or falsified bitstreams can cause fatal damage to FPGAs. In this paper, we present a high-speed and area-efficient bitstream protection scheme for DPR systems using the Advanced Encryption Standard with Galois/Counter Mode (AES-GCM), which is an authenticated encryption algorithm. Unlike many previous studies, our bitstream protection scheme also provides a mechanism for error recovery and tamper resistance against configuration block deletion, insertion, and disorder. The implementation and evaluation results show that our DPR scheme achieves a higher performance, in terms of speed and area, than previous methods.

  • Generic Construction of Two-Party Round-Optimal Attribute-Based Authenticated Key Exchange without Random Oracles

    Kazuki YONEYAMA  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1112-1123

    In this paper, we propose a generic construction of one-round attribute-based (implicitly) authenticated key exchange (ABAKE). The construction is based on a chosen-ciphertext (CCA) secure attribute-based KEM and the decisional Diffie-Hellman (DDH) assumption. If an underlying attribute-based KEM scheme allows expressive access controls and is secure in the standard model (StdM), an instantiated ABAKE scheme also achieves them. Our scheme enjoys the best of both worlds: efficiency and security. The number of rounds is one (optimal) while the known secure scheme in the StdM is not one-round protocol. Our scheme is comparable in communication complexity with the most efficient known scheme that is not proved in the StdM. Also, our scheme is proved to satisfy security against advanced attacks like key compromise impersonation.

  • One-Round Authenticated Key Exchange with Strong Forward Secrecy in the Standard Model against Constrained Adversary

    Kazuki YONEYAMA  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1124-1138

    Forward secrecy (FS) is a central security requirement of authenticated key exchange (AKE). Especially, strong FS (sFS) is desirable because it can guarantee security against a very realistic attack scenario that an adversary is allowed to be active in the target session. However, most of AKE schemes cannot achieve sFS, and currently known schemes with sFS are only proved in the random oracle model. In this paper, we propose a generic construction of AKE protocol with sFS in the standard model against a constrained adversary. The constraint is that session-specific intermediate computation results (i.e., session state) cannot be revealed to the adversary for achieving sFS, that is shown to be inevitable by Boyd and González Nieto. However, our scheme maintains weak FS (wFS) if session state is available to the adversary. Thus, our scheme satisfies one of strongest security definitions, the CK+ model, which includes wFS and session state reveal. The main idea to achieve sFS is to use signcryption KEM while the previous CK+ secure construction uses ordinary KEM. We show a possible instantiation of our construction from Diffie-Hellman problems.

  • id-eCK Secure ID-Based Authenticated Key Exchange on Symmetric and Asymmetric Pairing

    Atsushi FUJIOKA  Fumitaka HOSHINO  Tetsutaro KOBAYASHI  Koutarou SUZUKI  Berkant USTAOLU  Kazuki YONEYAMA  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1139-1155

    In this paper, we propose an identity-based authenticated key exchange (ID-AKE) protocol that is secure in the identity-based extended Canetti-Krawczyk (id-eCK) model in the random oracle model under the gap Bilinear Diffie-Hellman assumption. The proposed ID-AKE protocol is the most efficient among the existing ID-AKE protocols that is id-eCK secure, and it can be extended to use in asymmetric pairing.

  • Characterization of Strongly Secure Authenticated Key Exchanges without NAXOS Technique

    Atsushi FUJIOKA  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1088-1099

    This paper examines two-pass authenticated key exchange (AKE) protocols that are secure without the NAXOS technique under the gap Diffie-Hellman assumption in the random oracle model: FHMQV [18], KFU1 [21], SMEN- [13], and UP [17]. We introduce two protocol, biclique DH protocol and multiplied biclique DH protocol, to analyze the subject protocols, and show that the subject protocols use the multiplied biclique DH protocol as internal protocols. The biclique DH protocol is secure, however, the multiplied biclique DH protocol is insecure. We show the relations between the subject protocols from the viewpoint of how they overcome the insecurity of the multiplied biclique DH protocol: FHMQV virtually executes two multiplied biclique DH protocols in sequence with the same ephemeral key on two randomized static keys. KFU1 executes two multiplied biclique DH protocols in parallel with the same ephemeral key. UP is a version of KFU1 in which one of the static public keys is generated with a random oracle. SMEN- can be thought of as a combined execution of two multiplied biclique DH protocols. In addition, this paper provides ways to characterize the AKE protocols and defines two parameters: one consists of the number of static keys, the number of ephemeral keys, and the number of shared secrets, and the other is defined as the total sum of these numbers. When an AKE protocol is constructed based on some group, these two parameters indicate the number of elements in the group, i.e., they are related to the sizes of the storage and communication data.

1-20hit(47hit)