Haechul CHOI Ho Chul SHIN Si-Woong LEE Yun-Ho KO
In this paper, we propose a method for extracting an object boundary from a low-quality image such as an infrared one. To take full advantage of a training set, the overall shape is modeled by incorporating statistical characteristics of moments into the point distribution model (PDM). Furthermore, a differential equation for the moment of overall shape is derived for shape refinement, which leads to accurate and rapid deformation of a boundary template toward real object boundary. The simulation results show that the proposed method has better performance than conventional boundary extraction methods.
Junkil PARK Jungjae LEE Jin-Young CHOI Insup LEE
The algebra of communicating shared resources (ACSR) is a timed process algebra which extends classical process algebras with the notion of a resource. In analyzing ACSR models, the existing techniques such as bisimulation checking and Hennessy-Milner Logic (HML) model checking are very important in theory of ACSR, but they are difficult to use for large complex system models in practice. In this paper, we suggest a framework to verify ACSR models against their requirements described in an expressive timed temporal logic. We demonstrate the usefulness of our approach with a real world case study.
By using multiple repeated signal replicas to formulate the accumulative observed noisy signal sequence (AONSS) or the differential observed noisy signal sequence (DONSS) in the hybrid ARQ system, a novel data-aided maximum likelihood (DA ML) SNR estimation and a blind ML SNR estimation technique are proposed for the AWGN channel. It is revealed that the conventional DA ML estimate is a special case of the novel DA ML estimate, and both the proposed DA ML and the proposed blind ML SNR estimation techniques can offer satisfactory SNR estimation without introducing significant additional complexity to the existing hybrid ARQ scheme. Based on the AONSS, both the generalized deterministic and the random Cramer-Rao lower bounds (GCRLBs), which include the traditional Cramer-Rao lower bounds (CRLBs) as special cases, are also derived. Finally, the applicability of the proposed SNR estimation techniques based on the AONSS and the DONSS are validated through numerical analysis and simulation results.
Manabu HAGIWARA Marc P.C. FOSSORIER Takashi KITAGAWA Hideki IMAI
In this paper, we investigate the smallest value of p for which a (J,L,p)-QC LDPC code with girth 6 exists for J=3 and J=4. For J=3, we determine the smallest value of p for any L. For J=4, we determine the smallest value of p for L ≤ 301. Furthermore we provide examples of specific constructions meeting these smallest values of p.
For a cyclic code, the BCH Bound and the Hartmann-Tzeng bound are two of well-known lower bounds for its minimum distance. New bounds are proposed by N. Boston in 2001, that depend on defining set of cyclic code. In this paper, we consider the between the Boston bound and these two bounds for non-binary cyclic codes from numerical examples.
In modern VLSI physical design, huge integration scale necessitates hierarchical design and IP reuse to cope with design complexity. Besides, interconnect delay becomes dominant to overall circuit performance. These critical factors require some modules to be placed along designated boundaries to effectively facilitate hierarchical design and interconnection optimization related problems. In this paper, boundary constraints of general floorplan are solved smoothly based on the novel representation Single-Sequence (SS). Necessary and sufficient conditions of rooms along specified boundaries of a floorplan are proposed and proved. By assigning constrained modules to proper boundary rooms, our proposed algorithm always guarantees a feasible SS code with appropriate boundary constraints in each perturbation. Time complexity of the proposed algorithm is O(n). Experimental results on MCNC benchmarks show effectiveness and efficiency of the proposed method.
This Letter proposes a new kind of features for color image retrieval based on Distance-weighted Boundary Predictive Vector Quantization (DWBPVQ) Index Histograms. For each color image in the database, 6 histograms (2 for each color component) are calculated from the six corresponding DWBPVQ index sequences. The retrieval simulation results show that, compared with the traditional Spatial-domain Color-Histogram-based (SCH) features and the DCTVQ index histogram-based (DCTVQIH) features, the proposed DWBPVQIH features can greatly improve the recall and precision performance.
In 2006, Chatterjee and Sarkar proposed a hierarchical identity-based encryption (HIBE) scheme which can support an unbounded number of identity levels. This property is particularly useful in providing forward secrecy by embedding time components within hierarchical identities. In this paper we show that their scheme does not provide the claimed property. Our analysis shows that if the number of identity levels becomes larger than the value of a fixed public parameter, an unintended receiver can reconstruct a new valid ciphertext and decrypt the ciphertext using his or her own private key. The analysis is similarly applied to a multi-receiver identity-based encryption scheme presented as an application of Chatterjee and Sarkar's HIBE scheme.
Takafumi MATSUO Tatsuhiro TSUCHIYA Tohru KIKUNO
In this paper, we propose an unbounded model checking method for feature interaction verification for telecommunication systems. Unbounded model checking is a SAT-based verification method and has attracted recent attention as a powerful approach. The interpolation-based approach is one of the most promising unbounded model checking methods and has been proven to be effective for hardware verification. However, the application of unbounded model checking to asynchronous systems, such as telecommunication systems, has rarely been practiced. This is because, with the conventional encoding, the behavior of an asynchronous system can only be represented as a large propositional formula, thus resulting in large computational cost. To overcome this problem we propose to use a new scheme for encoding the behavior of the system and adapt the unbounded model checking algorithm to this encoding. By exploiting the concurrency of an asynchronous system, this encoding scheme allows a very concise formula to represent system's behavior. To demonstrate the effectiveness of our approach, we conduct experiments where 21 pairs of telecommunication services are verified using several methods including ours. The results show that our approach exhibits significant speed-up over unbounded model checking using the traditional encoding.
Salient edge detection which is mentioned less frequently than salient point detection is another important cue for subsequent processing in computer vision. How to find the salient edges in natural images is not an easy work. This paper proposes a simple method for salient edge detection which preserves the edges with more salient points on the boundaries and cancels the less salient ones or noise edges in natural images. According to the Gestalt Principles of past experience and entirety, we should not detect the whole edges in natural images. Only salient ones can be an advantageous tool for the following step just like object tracking, image segmentation or contour detection. Salient edges can also enhance the efficiency of computing and save the space of storage. The experiments show the promising results.
A new hierarchical isosurface reconstruction scheme from a set of tomographic cross sectional images is presented. From the input data, we construct a hierarchy of volume, called the volume pyramid, based on a 3D dilation filter. After extracting the base mesh from the volume at the coarsest level by the cell-boundary method, we iteratively fit the mesh to the isopoints representing the actual isosurface of the volume. The SWIS (Shrink-wrapped isosurface) algorithm is adopted in this process, and a mesh subdivision scheme is utilized to reconstruct fine detail of the isosurface. According to experiments, our method is proved to produce a hierarchical isosurface which can be utilized by various multiresolution algorithms such as interactive visualization and progressive transmission.
Jingjing ZHONG Siwei LUO Qi ZOU
Boundary detection is one of the most studied problems in computer vision. It is the foundation of contour grouping, and initially affects the performance of grouping algorithms. In this paper we propose a novel boundary detection algorithm for contour grouping, which is a selective attention guided coarse-to-fine scale pyramid model. Our algorithm evaluates each edge instead of each pixel location, which is different from others and suitable for contour grouping. Selective attention focuses on the whole saliency objects instead of local details, and gives global spatial prior for boundary existence of objects. The evolving process of edges through the coarsest scale to the finest scale reflects the importance and energy of edges. The combination of these two cues produces the most saliency boundaries. We show applications for boundary detection on natural images. We also test our approach on the Berkeley dataset and use it for contour grouping. The results obtained are pretty good.
Hitoshi TOKUSHIGE Marc FOSSORIER Tadao KASAMI
This letter deals with an iterative decoding algorithm (IDA) for product codes. In the IDA, a soft-input and output iterative bounded-distance and encoding-based decoding algorithm is used for the component codes. Simulation results over an AWGN channel with BPSK modulation is presented and show the effectiveness of the IDA.
Jung-Hwan KIM Kee-Bum KIM Sajjad Hussain CHAUHDARY Wencheng YANG Myong-Soon PARK
The proliferation of research on target detection and tracking in wireless sensor networks has kindled development of monitoring continuous objects such as fires and hazardous bio-chemical material diffusion. In this paper, we propose an energy-efficient algorithm that monitors a moving event region by selecting only a subset of nodes near object boundaries. The paper also shows that we can effectively reduce report message size. It is verified with performance analysis and simulation results that total average report message size as well as the number of nodes which transmit the report messages to the sink can be greatly reduced, especially when the density of nodes over the network field is high.
Yoshiaki ANDO Hiroyuki SAITO Masashi HAYAKAWA
A total-field/scattered-field (TF/SF) boundary which is commonly used in the finite-difference time-domain (FDTD) method to illuminate scatterers by plane waves, is developed for use in the constrained interpolation profile (CIP) method. By taking the numerical dispersion into account, the nearly perfect TF/SF boundary can be achieved, which allows us to calculate incident fields containing high frequency components without fictitious scattered fields. First of all, we formulate the TF/SF boundary in the CIP scheme. The numerical dispersion relation is then reviewed. Finally the numerical dispersion is implemented in the TF/SF boundary to estimate deformed incident fields. The performance of the nearly perfect TF/SF boundary is examined by measuring leaked fields in the SF region, and the proposed method drastically diminish the leakage compared with the simple TF/SF boundary.
This paper investigates the problem of nonpreemptively scheduling independent parallel tasks in an environment with multiple machines, which is motivated from the recent studies in scheduling tasks in a multi-machine environment. In this scheduling environment, each machine contains a number of identical processors and each parallel task can simultaneously require a number of processors for its processing in any single machine. Whenever tasks are processed in parallel in a parallel machine, message communication among processors is often inevitable. The problem of finding a shortest schedule length on scheduling independent parallel tasks with the consideration of communication overhead in a multi-machine environment is NP-hard. The aim of this paper is to propose a heuristic algorithm for this kind of problem and to analyze the performance bound of this heuristic algorithm.
Kiyoshi TAKAHASHI Takuya TERASAWA Toshinori TSUBOI
We propose a medium access control (MAC) protocol for real-time applications in one-hop ad-hoc wireless networks. It is a distributed mechanism that takes account of priority and has a bounded packet delay. Nodes use energy signals to contend for the right to access the channel. Nodes, which have a packet to transmit, send energy signals or listen to the channel based on their binary frame. The node that has sent energy signals and has not heard any energy signals wins the right to access the channel. We use two schemes to determine the binary frame: at the beginning of a session, a node determines it based on its priority level and a random number; after successful transmission, based on a count of successful packet transmissions. With the first scheme, in order to reduce contention losses, the nodes that had won the right to access the channel but failed in transmission have priority over the other nodes. With the second scheme, the node that has the largest count, the one that has been waiting the longest, can send a packet without risking collision. The protocol provides higher probability of successful transmission and a limit on maximum packet delay. An analysis of the protocol provides conditions for the protocol to be stable. We evaluate the performance of the proposed protocol using simulations of a network with a mixed population of data and real-time nodes, whose source is constant bit rate (CBR) and a two state Markov on/off process.
Lei WANG Jun WANG Satoshi GOTO Takeshi IKENAGA
With the ubiquitous application of Internet and wireless networks, H.264 video communication becomes more and more common. However, due to the high-efficiently predictive coding and the variable length entropy coding, it is more sensitive to transmission errors. The current error concealment (EC) scheme, which utilizes the spatial and temporal correlations to conceal the corrupted region, produces unsatisfied boundary artifacts. In this paper, first we propose variable block size error concealment (VBSEC) scheme inspired by variable block size motion estimation (VBSME) in H.264. This scheme provides four EC modes and four sub-block partitions. The whole corrupted macro-block (MB) will be divided into variable block size adaptively according to the actual motion. More precise motion vectors (MV) will be predicted for each sub-block. Then MV refinement (MVR) scheme is proposed to refine the MV of the heterogeneous sub-block by utilizing three step search (TSS) algorithm adaptively. Both VBSEC and MVR are based on our directional spatio-temporal boundary matching algorithm (DSTBMA). By utilizing these schemes, we can reconstruct the corrupted MB in the inter frame more accurately. The experimental results show that our proposed scheme can obtain better objective and subjective EC quality, respectively compared with the boundary matching algorithm (BMA) adopted in the JM11.0 reference software, spatio-temporal boundary matching algorithm (STBMA) and other comparable EC methods.
Masakazu YAGI Takashi HISAKADO Kohshi OKUMURA
Harmonic balance (HB) method is well known principle for analyzing periodic oscillations on nonlinear networks and systems. Because the HB method has a truncation error, approximated solutions have been guaranteed by error bounds. However, its numerical computation is very time-consuming compared with solving the HB equation. This paper proposes an algebraic representation of the error bound using Grobner base. The algebraic representation enables to decrease the computational cost of the error bound considerably. Moreover, using singular points of the algebraic representation, we can obtain accurate break points of the error bound by collisions.
Yoshitaka NAKAO Hiroshi NAGAMOCHI
The pickup and delivery problem (PDP) asks to find a set of vehicles that serve a given set of requests with the minimum travel cost, where each request consists of a pickup point, a delivery point and a load (the quantity to be delivered from the pickup point to the delivery point). In the pickup and delivery problem with transfer (PDPT), for each request, its load picked up at the pickup point is allowed to be dropped at a transshipment point before it is picked up again and delivered to the delivery point by another vehicle. This paper analyzes the maximum travel cost that can be saved by introducing a transshipment point to the pickup and delivery problem (PDP). We show that the bounds are in proportion to square root of the number of cycles in an optimal PDPT solution and also square root of the number of requests. We furthermore present an instance that the bound is the tight for a special case.