Hideki KAWAGUCHI Thomas WEILAND
The Time Domain Boundary Element Method (TDBEM) has its advantages in the analysis of transient electromagnetic fields (wake fields) induced by a charged particle beam with curved trajectory in a particle accelerator. On the other hand, the TDBEM has disadvantages of huge required memory and computation time compared with those of the Finite Difference Time Domain (FDTD) method or the Finite Integration Technique (FIT). This paper presents a comparison of the FDTD method and 4-D domain decomposition method of the TDBEM based on an initial value problem formulation for the curved trajectory electron beam, and application to a full model simulation of the bunch compressor section of the high-energy particle accelerators.
Jun-ichiro SUGISAKA Takashi YASUI Koichi HIRAYAMA
A numerical investigation revealed the relation between the groove randomness of actual-size diffraction gratings and the diffraction efficiencies. The diffraction gratings we treat in this study have around 10000 grooves. When the illumination wavelength is 600 nm, the entire grating size becomes 16.2 mm. The simulation was performed using the difference-field boundary element method (DFBEM). The DFBEM treats the vectorial field with a small amount of memory resources as independent of the grating size. We firstly describe the applicability of DFBEM to a considerably large-sized structure; regularly aligned grooves and a random shallow-groove structure are calculated by DFBEM and compared with the results given by standard BEM and scalar-wave approximation, respectively. Finally we show the relation between the degree of randomness and the diffraction efficiencies for two orthogonal linear polarizations. The relation provides information for determining the tolerance of fabrication errors in the groove structure and measuring the structural randomness by acquiring the irradiance of the diffracted waves.
Takashi NAGASAKA Kazuya KOBAYASHI
The diffraction by a thin material strip is analyzed for the H-polarized plane wave incidence using the Wiener-Hopf technique together with approximate boundary conditions. An asymptotic solution is obtained for the case where the thickness and the width of the strip are small and large compared with the wavelength, respectively. The scattered field is evaluated asymptotically based on the saddle point method and a far field expression is derived. Scattering characteristics are discussed in detail via numerical results of the radar cross section.
Tatsuro KOJO Masashi TAWADA Masao YANAGISAWA Nozomu TOGAWA
Non-volatile memories are paid attention to as a promising alternative to memory design. Data stored in them still may be destructed due to crosstalk and radiation. We can restore the data by using error-correcting codes which require extra bits to correct bit errors. Further, non-volatile memories consume ten to hundred times more energy than normal memories in bit-writing. When we configure them using error-correcting codes, it is quite necessary to reduce writing bits. In this paper, we propose a method to generate a bit-write-reducing code with error-correcting ability. We first pick up an error-correcting code which can correct t-bit errors. We cluster its codeswords and generate a cluster graph satisfying the S-bit flip conditions. We assign a data to be written to each cluster. In other words, we generate one-to-many mapping from each data to the codewords in the cluster. We prove that, if the cluster graph is a complete graph, every data in a memory cell can be re-written into another data by flipping at most S bits keeping error-correcting ability to t bits. We further propose an efficient method to cluster error-correcting codewords. Experimental results show that the bit-write-reducing and error-correcting codes generated by our proposed method efficiently reduce energy consumption. This paper proposes the world-first theoretically near-optimal bit-write-reducing code with error-correcting ability based on the efficient coding theories.
Tetsunao MATSUTA Tomohiko UYEMATSU
In this paper, we deal with the fixed-length lossy compression, where a fixed-length sequence emitted from the information source is encoded into a codeword, and the source sequence is reproduced from the codeword with a certain distortion. We give lower and upper bounds on the minimum number of codewords such that the probability of exceeding a given distortion level is less than a given probability. These bounds are characterized by using the α-mutual information of order infinity. Further, for i.i.d. binary sources, we provide numerical examples of tight upper bounds which are computable in polynomial time in the blocklength.
Jinwoo LEE Jae Woo SEO Kookrae CHO Pil Joong LEE Juneyeun KIM Seung Hoon CHOI Dae Hyun YUM
The Android pattern unlock is a popular graphical password scheme, where a user is presented a 3×3 grid and required to draw a pattern on the onscreen grid. Each pattern is a sequence of at least four contact points with some restrictions. Theoretically, the security level of unlock patterns is determined by the size of the pattern space. However, the number of possible patterns is only known for 3×3 and 4×4 grids, which was computed by brute-force enumeration. The only mathematical formula for the number of possible patterns is a permutation-based upper bound. In this article, we present an improved upper bound by counting the number of “visible” points that can be directly reached by a point.
In this paper, we propose an RFID distance bounding protocol that uses m-ary challenges. Recently, Kim and Avoine proposed two distance bounding protocols with mixed challenges that are pre-determined or random. We generalize the first scheme of Kim and Avoine's random scheme as a distance bounding protocol with m-ary challenges. The generalized formula for success probabilities for mafia fraud and distance fraud attacks is derived. Our scheme using m-ary challenges reduces the mafia fraud success probability from (3/4)n for m=2 to (7/16)n for m=4 and the distance fraud success probability from $(1-rac 1 4 cdot P_r)^n$ for m=2 to $(1 - rac {189}{256} cdot P_r)^n$ for m=4, where Pr is the probability that a challenge is random.
Shotaro KAMIYA Keita NAGASHIMA Koji YAMAMOTO Takayuki NISHIO Masahiro MORIKURA Tomoyuki SUGIHARA
In densely deployed wireless local area network (WLAN) environments, the arbitrary deployment of WLAN access points (APs) can cause serious cell overlaps among APs. In such situations, the ability to realize adaptable coverage using transmission power control (TPC) is effective for improving the area spectral efficiency. Meanwhile, it should be guaranteed that no coverage holes occur and that connectivity between APs and wireless stations (STAs) is maintained. In this paper, the self-organization of coverage domains of APs using TPC is proposed. The proposed technique reduces the incidence of coverage overlaps without generating area coverage holes. To detect coverage holes, STAs and/or APs are used as sensors that inform each AP of whether or not the points at which they exist are covered by the APs. However, there is a problem with this approach in that when the density of STAs is not sufficiently large, the occurrence of area coverage holes is inevitable because the points at which the sensors do not exist are not guaranteed to be covered by APs. This paper overcomes the problem by focusing APs that belong to network's outer boundary (boundary APs) and prohibiting the APs from operating at low transmission power levels, the idea being that the coverage domains of such APs always include the region covered by only those APs. The boundary APs are determined by performing Delaunay triangulation of the set of points at which all APs exist. Simulation results confirm the effectiveness of the proposed TPC scheme in terms of its ability to reduce the total overlap area while avoiding the occurrence of area coverage holes.
Le DONG Tianli WANG Jiao DU Shanqi PANG
We present a rebound attack on the 4-branch type-2 generalized Feistel structure with an SPS round function, which is called the type-2 GFN-SPS in this paper. Applying a non-full-active-match technique, we construct a 6-round known-key truncated differential distinguisher, and it can deduce a near-collision attack on compression functions of this structure embedding the MMO or MP modes. Extending the 6-round attack, we build a 7-round truncated differential path to get a known-key differential distinguisher with seven rounds. The results give some evidences that this structure is not stronger than the type-2 GFN with an SP round function and not weaker than that with an SPSP round function against the rebound attack.
A cover free family (CFF) is a useful mathematical tool for cryptographic schemes where any pre-defined number of sets in the family do not cover another set in the family. The common disadvantage of CFF-based schemes is the requirement for a significantly large amount of data such as public keys and ciphertexts. This paper proposes a simple method to reduce the size of ciphertexts in CFF-based broadcast encryption schemes by removing redundant elements from sets in the family, and then analyzes the size of cihpertexts. As a result, in a typical distribution case, the average amount of ciphertexts is reduced to 83 percents (from 691Kbits to 576Kbits).
In the paradigm of network coding, when the network topology information cannot be utilized completely, random linear network coding (RLNC) is proposed as a feasible coding scheme. But since RLNC neither considers the global network topology nor coordinates codings between different nodes, it may not achieve the best possible performance of network coding. Hence, the performance analysis of RLNC is very important for both theoretical research and practical applications. Motivated by a fact that different network topology information can be available for different network communication problems, we study and obtain several upper and lower bounds on the failure probability at sink nodes depending on different network topology information in this paper, which is also the kernel to discuss some other types of network failure probabilities. In addition, we show that the obtained upper bounds are tight, the obtained lower bound is asymptotically tight, and we give the worst cases for different scenarios.
In this paper we discuss approximation algorithms for the ELEMENT-DISJOINT STEINER TREE PACKING problem (Element-STP for short). For a graph G=(V,E) and a subset of nodes T⊆V, called terminal nodes, a Steiner tree is a connected, acyclic subgraph that contains all the terminal nodes in T. The goal of Element-STP is to find as many element-disjoint Steiner trees as possible. Element-STP is known to be APX-hard even for |T|=3 [1]. It is also known that Element-STP is NP-hard to approximate within a factor of Ω(log |V|) [3] and there is an O(log |V|)-approximation algorithm for Element-STP [2],[4]. In this paper, we provide a $lceil rac{|T|}{2} ceil$-approximation algorithm for Element-STP on graphs with |T| terminal nodes. Furthermore, we show that the approximation ratio of 3 for Element-STP on graphs with five terminal nodes can be improved to 2.
Cuiling FAN Rong LUO Xiaoni DU
Codebooks with good parameters are preferred in many practical applications, such as direct spread CDMA communications and compressed sensing. In this letter, an upper bound on the set size of a codebook is introduced by modifying the Levenstein bound on the maximum amplitudes of such a codebook. Based on an estimate of a class of character sums over a finite field by Katz, a family of codebooks nearly meeting the modified bound is proposed.
Keehang KWON Jeongyoon SEO Daeseong KANG
Adding versatile interactions to imperative programming - C, Java and Android - is an essential task. Unfortunately, existing languages provide only limited constructs for user interaction. These constructs are usually in the form of unbounded quantification. For example, existing languages can take the keyboard input from the user only via the read(x)/scan(x) statement. Note that the value of x is unbounded in the sense that x can have any value. This statement is thus not useful for applications with bounded inputs. To support bounded choices, we propose new bounded-choice statements for user interation. Each input device (keyboard, mouse, touchpad, ...) naturally requires a new bounded-choice statement. To make things simple, however, we focus on a bounded-choice statement for keyboard - kchoose - to allow for more controlled and more guided participation from the user. We illustrate our idea via CBI, an extension of the core C with a new bounded-choice statement for the keyboard.
Jiyong LU Xuan GUANG Linzhi SHEN Fang-Wei FU
In distributed storage systems, codes with lower repair locality are much more desirable due to their superiority in reducing the disk I/O complexity of each repair process. Motivated partially by both codes with information (r,δ1)c locality and codes with cooperative (r,l) locality, we propose the concept of codes with information (r,l,δ) locality in this paper. For a linear code C with information (r,l,δ) locality, values at arbitrary l information coordinates of an information set I can be recovered by connecting any of δ existing pairwise disjoint local repair sets with size no more than r, where a local repair set of l coordinates is defined as the set of some other coordinates by which one can recover the values at these l coordinates. We derive a lower bound on the codeword length n for [n,k,d] linear codes with information (r,l,δ) locality. Furthermore, we indicate its tightness for some special cases. Particularly, some existing results can be deduced from our bound by restriction on parameters.
Jaehyun HWANG Cheol-Ho HONG Hyo-Joong SUH
This paper proposes a rate adjustment scheme for inbound data traffic on a virtualized host. Most prior studies on network virtualization have only focused on outbound traffic, yet many cloud applications rely on inbound traffic performance. The proposed scheme adjusts the inbound rates of virtual network interfaces dynamically in proportion to the bandwidth demands of the virtual machines.
Explicit evaluation of the rate-distortion function has rarely been achieved when it is strictly greater than its Shannon lower bound since it requires to identify the support of the optimal reconstruction distribution. In this paper, we consider the rate-distortion function for the distortion measure defined by an ε-insensitive loss function. We first present the Shannon lower bound applicable to any source distribution with finite differential entropy. Then, focusing on the Laplacian and Gaussian sources, we prove that the rate-distortion functions of these sources are strictly greater than their Shannon lower bounds and obtain upper bounds for the rate-distortion functions. Small distortion limit and numerical evaluation of the bounds suggest that the Shannon lower bound provides a good approximation to the rate-distortion function for the ε-insensitive distortion measure. By using the derived bounds, we examine the performance of a scalar quantizer. Furthermore, we discuss variants and extensions of the ε-insensitive distortion measure and obtain lower and upper bounds for the rate-distortion function.
Jiageng CHEN Shoichi HIROSE Hidenori KUWAKADO Atsuko MIYAJI
This paper presents the first non-trivial collision attack on the double-block-length compression function presented at FSE 2006 instantiated with round-reduced AES-256: f0(h0||h1,M)||f1(h0||h1,M) such that f0(h0||h1, M) = Eh1||M(h0)⊕h0 , f1(h0||h1,M) = Eh1||M(h0⊕c)⊕h0⊕c , where || represents concatenation, E is AES-256 and c is a 16-byte non-zero constant. The proposed attack is a free-start collision attack using the rebound attack proposed by Mendel et al. The success of the proposed attack largely depends on the configuration of the constant c: the number of its non-zero bytes and their positions. For the instantiation with AES-256 reduced from 14 rounds to 8 rounds, it is effective if the constant c has at most four non-zero bytes at some specific positions, and the time complexity is 264 or 296. For the instantiation with AES-256 reduced to 9 rounds, it is effective if the constant c has four non-zero bytes at some specific positions, and the time complexity is 2120. The space complexity is negligible in both cases.
Jun-ichiro SUGISAKA Takashi YASUI Koichi HIRAYAMA
We propose an algorithm for the scattering analyses of gratings with various local defects based on the difference-field boundary-element method (DFBEM). In the algorithm, the defect in the grating is partitioned, and the DFBEM is sequentially applied for each defect section. We validate the proposed algorithm by demonstrating its flexibility for various defect topologies for a locally deformed grating.
Takuya NIIMI Shouhei KIDERA Tetsuo KIRIMOTO
Microwave ultra-wideband (UWB) radar systems are advantageous for their high-range resolution and ability to penetrate dielectric objects. Internal imaging of dielectric objects by UWB radar is a promising nondestructive method of testing aging roads and bridges and a noninvasive technique for human body examination. For these applications, we have already developed an accurate internal imaging approach based on the range points migration (RPM) method, combined with a method that efficiently estimates the dielectric constant. Although this approach accurately extracts the internal boundary, it is applicable only to highly conductive targets immersed in homogeneous dielectric media. It is not suitable for multi-layered dielectric structures such as human tissues or concrete objects. To remedy this limitation, we here propose a novel dielectric constant and boundary extraction method for double-layered materials. This new approach, which simply extends the Envelope method to boundary extraction of the inner layer, is evaluated in finite difference time domain (FDTD)-based simulations and laboratory experiments, assuming a double-layered concrete cylinder. These tests demonstrate that our proposed method accurately and simultaneously estimates the dielectric constants of both media and the layer boundaries.