The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] bound(451hit)

281-300hit(451hit)

  • Boundary Scan Test Scheme for IP Core Identification via Watermarking

    Yu-Cheng FAN  Hen-Wai TSAO  

     
    LETTER-Programmable Logic, VLSI, CAD and Layout

      Vol:
    E88-D No:7
      Page(s):
    1397-1400

    This paper proposes a novel boundary scan test scheme for intellectual property (IP) core identification via watermarking. The core concept is embedding a watermark identification circuit (WIC) and a test circuit into the IP core at the behavior design level. The procedure depends on current IP-based design flow. This scheme can detect the identification of the IP provider without the need to examine the microphotograph after the chip has been manufactured and packaged. This scheme can successfully survive synthesis, placement, and routing and identify the IP core at various design levels. Experimental results have demonstrated that the proposed approach has the potential to solve the IP identification problem.

  • M-Sweeps Exact Performance Analysis of OS Modified Versions in Nonhomogeneous Environments

    Mohamed Bakry EL-MASHADE  

    This paper was deleted on October 26, 2005 because it was found to be a triplicate submission (see details in the pdf file).
     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:7
      Page(s):
    2918-2927

    Our goal in this paper is to provide a complete detection analysis for the OS processor along with OSGO and OSSO modified versions, for M postdetection integrated pulses when the operating environment is nonideal. Analytical results of performance are presented in both multiple-target situations and in regions of clutter power transitions. The primary and the secondary interfering targets are assumed to be fluctuating in accordance with the Swerling II target fluctuation model. As the number of noncoherently integrated pulses increases, lower threshold values and consequently better detection performances are obtained in both homogeneous and multiple target background models. However, the false alarm rate performance of OSSO-CFAR scheme at clutter edges is worsen with increasing the postdetection integrated pulses. As predicted, the OSGO-CFAR detector accommodates the presence of spurious targets in the reference window, given that their number is within its allowable range in each local window, and controls the rate of false alarm when the contents of the reference cells have clutter boundaries. The OSSO-CFAR scheme is useful in the situation where there is a cluster of radar targets amongst the estimation cells.

  • Antenna Design Using the Finite Difference Time Domain Method

    Toru UNO  

     
    INVITED PAPER

      Vol:
    E88-B No:5
      Page(s):
    1774-1789

    The finite difference time domain (FDTD) method has been developed in tandem with the progress of computer technology since K. S. Yee applied it to the analysis of an electromagnetic problem in 1966. The FDTD method is widely recognized as a powerful computational tool for analyzing electromagnetic problems involving complex geometries, such as antennas, microwave and optical waveguides and interaction between antennas and the human body. The commercial electromagnetic simulators based on the FDTD are also being developed very actively because users are able to trace temporal electromagnetic behaviors and to easily obtain a practical level of accuracy. However, the user must understand the principle of the method in order to use the simulator efficiently. In this paper, the basic concept and the principle of the FDTD method are reviewed for beginners, including graduate course students, rather than specialists in this discipline. Several recent topics concerning electromagnetic and antenna problems are also introduced.

  • Robust Supervisory Control of Uncertain Timed Discrete Event Systems Based on Activity Models and Eligible Time Bounds

    Seong-Jin PARK  

     
    LETTER-Systems and Control

      Vol:
    E88-A No:3
      Page(s):
    782-786

    This paper addresses a robust supervisory control problem for uncertain timed discrete event systems (DESs) modeled as a set of some possible timed models. To avoid the state space explosion problem caused by tick transitions in timed models, the notion of eligible time bounds is presented. Based on the notion and activity (logical) models, this paper shows how the controllability condition of a given language specification is presented as a necessary and sufficient condition for the existence of a robust supervisor to achieve the specification for any timed model in the set.

  • Upper Bounds of the Correlation Functions of a Class of Binary Zero-Correlation-Zone Sequences

    Takafumi HAYASHI  Takao MAEDA  Satoshi OKAWA  

     
    LETTER-Coding Theory

      Vol:
    E88-A No:3
      Page(s):
    791-794

    The present letter describes the estimation of the upper bounds of the correlation functions of a class of zero-correlation-zone sequences constructed from an arbitrary Hadamard matrix.

  • MOS-Bounded Diodes for On-Chip ESD Protection in Deep Submicron CMOS Process

    Ming-Dou KER  Kun-Hsien LIN  Che-Hao CHUANG  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E88-C No:3
      Page(s):
    429-436

    New diode structures without the field-oxide boundary across the p/n junction for ESD protection are proposed. A NMOS (PMOS) is especially inserted into the diode structure to form the NMOS-bounded (PMOS-bounded) diode, which is used to block the field oxide isolation across the p/n junction in the diode structure. The proposed N(P)MOS-bounded diodes can provide more efficient ESD protection to the internal circuits, as compared to the other diode structures. The N(P)MOS-bounded diodes can be used in the I/O ESD protection circuits, power-rail ESD clamp circuits, and the ESD conduction cells between the separated power lines. From the experimental results, the human-body-model ESD level of ESD protection circuit with the proposed N(P)MOS-bounded diodes is greater than 8 kV in a 0.35-µm CMOS process.

  • A Genetic Algorithm for Routing with an Upper Bound Constraint

    Jun INAGAKI  Miki HASEYAMA  

     
    LETTER-Biocybernetics, Neurocomputing

      Vol:
    E88-D No:3
      Page(s):
    679-681

    This paper presents a method of searching for the shortest route via the most designated points with the length not exceeding the preset upper bound. The proposed algorithm can obtain the quasi-optimum route efficiently and its effectiveness is verified by applying the algorithm to the actual map data.

  • Improved Boundary Element Method for Fast 3-D Interconnect Resistance Extraction

    Xiren WANG  Deyan LIU  Wenjian YU  Zeyi WANG  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:2
      Page(s):
    232-240

    Efficient extraction of interconnect parasitic parameters has become very important for present deep submicron designs. In this paper, the improved boundary element method (BEM) is presented for 3-D interconnect resistance extraction. The BEM is accelerated by the recently proposed quasi-multiple medium (QMM) technology, which quasi-cuts the calculated region to enlarge the sparsity of the overall coefficient matrix to solve. An un-average quasi-cutting scheme for QMM, advanced nonuniform element partition and technique of employing the linear element for some special surfaces are proposed. These improvements considerably condense the computational resource of the QMM-based BEM without loss of accuracy. Experiments on actual layout cases show that the presented method is several hundred to several thousand times faster than the well-known commercial software Raphael, while preserving the high accuracy.

  • Path-Bounded One-Way Multihead Finite Automata

    Satoshi INOUE  Katsushi INOUE  Akira ITO  Yue WANG  

     
    LETTER

      Vol:
    E88-D No:1
      Page(s):
    96-99

    For each positive integer r 1, a nondeterministic machine M is r path-bounded if for any input word x, there are r computation paths of M on x. This paper investigates the accepting powers of path-bounded one-way (simple) multihead nondeterministic finite automata. It is shown that for each k 2 and r 1, there is a language accepted by an (r + 1) path-bounded one-way nondeterministic k head finite automaton, but not accepted by any r path-bounded one-way nondeterministic k head finite automaton whether or not simple.

  • Online Model Predictive Control for Max-Plus Linear Systems with Selective Parameters

    Hiroyuki GOTO  Shiro MASUDA  

     
    LETTER

      Vol:
    E87-A No:11
      Page(s):
    2944-2949

    We develop an algorithm for a controller design method for Max-Plus Linear (MPL) systems with selective parameters. Since the conventional algorithm we proposed requires high computational load when the prediction horizon is large, two methods for reducing the calculation time are proposed. One is based upon the branch-and-bound method, and the other is to reuse the optimal solution. The effectiveness of these two methods is confirmed through numerical simulation.

  • A Phase Compensation Algorithm for High-Resolution Pulse Radar Systems

    Takuya SAKAMOTO  Toru SATO  

     
    PAPER-Sensing

      Vol:
    E87-B No:11
      Page(s):
    3314-3321

    Imaging techniques for robots are important and meaningful in the near future. Pulse radar systems have a great potential for shape estimation and locationing of targets. They have an advantage that they can be used even in critical situations where optical techniques cannot be used. It is thus required to develop high-resolution imaging algorithms for pulse radar systems. High-resolution imaging algorithms utilize the carrier phase of received signals. However, their estimation accuracy suffers degradation due to phase rotation of the received signal because the phase depends on the shape of the target. In this paper, we propose a phase compensation algorithm for high-resolution pulse radar systems. The proposed algorithm works well with SEABED algorithm, which is a non-parametric algorithm of estimating target shapes based on a reversible transform. The theory is presented first and numerical simulation results follow. We show the estimation accuracy is remarkably improved without sacrificing the resolution using the proposed algorithm.

  • Adaptive Bound Reduced-Form Genetic Algorithms for B-Spline Neural Network Training

    Wei-Yen WANG  Chin-Wang TAO  Chen-Guan CHANG  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E87-D No:11
      Page(s):
    2479-2488

    In this paper, an adaptive bound reduced-form genetic algorithm (ABRGA) to tune the control points of B-spline neural networks is proposed. It is developed not only to search for the optimal control points but also to adaptively tune the bounds of the control points of the B-spline neural networks by enlarging the search space of the control points. To improve the searching speed of the reduced-form genetic algorithm (RGA), the ABRGA is derived, in which better bounds of control points of B-spline neural networks are determined and paralleled with the optimal control points searched. It is shown that better efficiency is obtained if the bounds of control points are adjusted properly for the RGA-based B-spline neural networks.

  • A Framework for Reliable Data Delivery in Delay Bounded Overlay Multicast

    Ki-Il KIM  Dong-Kyun KIM  Sang-Ha KIM  

     
    LETTER-Network

      Vol:
    E87-B No:11
      Page(s):
    3356-3360

    In this letter, we propose to construct reliable overlay data delivery tree based on group member's packet loss rate while preserving end-to-end delay below predetermined threshold. Through practical simulation, performance is evaluated and compared.

  • Analysis and Design of Multicast Routing and Wavelength Assignment in Mesh and Multi-Ring WDM Transport Networks with Multiple Fiber Systems

    Charoenchai BOWORNTUMMARAT  Lunchakorn WUTTISITTIKULKIJ  Sak SEGKHOONTHOD  

     
    PAPER-Network

      Vol:
    E87-B No:11
      Page(s):
    3216-3229

    In this paper, we consider the problem of multicast routing and wavelength assignment (MC-RWA) in multi-fiber all-optical WDM networks. Two main network design system comprehensively investigated here are mesh and multi-ring designs. Given the multicast traffic demands, we present new ILP formulations to solve the MC-RWA problem with an objective to determine the minimal number of fibers needed to support the multicast requests. Unlike previous studies, our ILP formulations are not only capable of finding the optimal multicast routing and wavelength assignment pattern to the light-trees, but also finding the optimal light-tree structures simultaneously. Since broadcast and unicast communications are special cases of multicast communications, our ILP models are actually the generalized RWA mathematical models of optical WDM networks. In addition to proposing the ILP models, this paper takes two main issues affecting the network capacity requirement into account, that is, the splitting degree level of optical splitters and techniques of wavelength assignment to the light-trees. Three multicast wavelength assignment techniques studied in this paper are Light-Tree (LT), Virtual Light-Tree (VLT) and Partial Virtual Light-Tree (PVLT) techniques. Due to the NP-completeness of the MC-RWA problem, the ILP formulations can reasonably cope with small and moderate networks. To work with large networks, this paper presents alternative MC-RWA ILP-based heuristic algorithms for the PVLT and LT networks and develops lower bound techniques to characterize the performance of our algorithms. Using existing large backbone networks, numerical results are reported to analyze such aspects as multiple fiber systems, the benefits of using optical splitters and wavelength converters, and the capacity difference between the mesh and multi-ring designs. Finally, this paper provides an analysis of the influence of network connectivity on the network implementation under the constraints of mesh and multi-ring design schemes.

  • Stability Boundaries Analysis of Electric Power System with DC Transmission Based on Differential-Algebraic Equation System

    Yoshihiko SUSUKI  Takashi HIKIHARA  Hsiao-Dong CHIANG  

     
    PAPER

      Vol:
    E87-A No:9
      Page(s):
    2339-2346

    This paper discusses stability boundaries in an electric power system with dc transmission based on a differential-algebraic equation (DAE) system. The DAE system is derived to analyze transient stability of the ac/dc power system: the differential equation represents the dynamics of the generator and the dc transmission, and the algebraic equation the active and reactive power relationship between the ac system and the dc transmission. In this paper complete characterization of stability boundaries of stable equilibrium points in the DAE system is derived based on an energy function for the associated singularly perturbed (SP) system. The obtained result completely describes global structures of the stability boundaries in solution space of the DAE system. In addition the characterization is confirmed via several numerical results with a stability boundary.

  • Novel High-Frequency Asymptotic Solutions in the Transition Regions near Geometrical Boundaries and near Caustics for Scattering by a Dielectric Cylinder

    Teruhiko IDA  Toyohiko ISHIHARA  

     
    PAPER-Basic Electromagnetic Analysis

      Vol:
    E87-C No:9
      Page(s):
    1550-1559

    Novel high-frequency asymptotic solutions for the scattered fields by a dielectric circular cylinder with a radius of curvature sufficiently larger than the wavelength are presented in this paper. We shall derive the modified UTD (uniform Geometrical Theory of Diffraction) solution, which is applicable in the transition regions near the geometrical boundaries produced by the incident ray on the dielectric cylinder from the tangential direction. Also derived are the uniform geometrical ray solutions applicable near the geometrical boundaries and near the caustics produced by the ray family reflected on the internal concave boundary of the dielectric cylinder. The validity and the utility of the uniform solutions are confirmed by comparing with the exact solution obtained from the eigenfuction expansion.

  • A Prediction Method of Common-Mode Excitation on a Printed Circuit Board Having a Signal Trace near the Ground Edge

    Tetsushi WATANABE  Hiroshi FUJIHARA  Osami WADA  Ryuji KOGA  Yoshio KAMI  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E87-B No:8
      Page(s):
    2327-2334

    Common-mode excitation caused by an imperfect ground plane on a printed circuit board (PCB) has been conventionally explained with the 'current driven' scheme, in which the common-mode current is driven by the ground voltage across the unintentional inductance of the ground plane. We have developed an alternative method for estimating common-mode excitation that is driven by the difference of the common-mode voltages for two connected transmission lines. A parameter called current division factor (CDF) that represents the degree of imbalance of a transmission line explains the common-mode voltage. In this paper, we calculate the CDF with two-dimensional (2-D) static electric field analysis by using the boundary element method (BEM) for asymmetric transmission lines with an arbitrary cross-section. The proposed 2-D method requires less time than three-dimensional simulations. The EMI increase due to a signal line being close to the edge of the ground pattern was evaluated through CDF calculation. The estimated increase agreed well--within 2 dB--with the measured one.

  • Enhanced Interval Splitting and Bounding for Global Optimization

    Ronald WAWERU MWANGI  Hideyuki IMAI  Yoshiharu SATO  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E87-A No:8
      Page(s):
    2120-2125

    In order to produce precise enclosures from a multi-dimensional interval vector, we introduce a sharp interval sub-dividing condition for optimization algorithms. By utilizing interval inclusion properties, we also enhance the sampling of an upper bound for effective use in the interval quadratic method. This has resulted in an improvement in the algorithm for the unconstrained optimization problem by Hansen in 1992.

  • A Target Shape Estimation Algorithm for Pulse Radar Systems Based on Boundary Scattering Transform

    Takuya SAKAMOTO  Toru SATO  

     
    PAPER-Sensing

      Vol:
    E87-B No:5
      Page(s):
    1357-1365

    Environment measurement is an important issue for various applications including household robots. Pulse radars are promising candidates in a near future. Estimating target shapes using waveform data, which we obtain by scanning an omni-directional antenna, is known as one of ill-posed inverse problems. Parametric methods such as Model-fitting method have problems concerning calculation time and stability. We propose a non-parametric algorithm for high-resolution estimation of target shapes in order to solve the problems of parametric algorithms.

  • On Group Multicast Routing with Bandwidth Constraint: A Lower Bound and Performance Evaluation

    Chor Ping LOW  Ning WANG  

     
    PAPER-Network

      Vol:
    E87-B No:1
      Page(s):
    124-131

    Group multicasting is a generalization of multicasting whereby every member of a group is allowed to multicast messages to other members that belongs to the same group. The group multicast routing problem (GMRP) is that of finding a set of multicast trees with bandwidth requirements, each rooted at a member of the group, for multicasting messages to other members of the group. An optimal solution to GMRP is a set of trees, one for each member of the group, that incurs the least overall cost. This problem is known to be NP-complete and hence heuristic algorithms are likely to be the only viable approach for computing near optimal solutions in practice. In this paper, we derive a lower bound on the cost of an optimal solution to GMRP by using Lagrangean Relaxation and Subgradient Optimization. This lower bound is used to evaluate the two existing heuristic algorithms in terms of their ability to find close-to-optimal solutions.

281-300hit(451hit)