Toshihiro NIINOMI Hideki YAGI Shigeichi HIRASAWA
Recently, Hof et al. extended the type-2 Duman and Salehi (DS2) bound to generalized decoding, which was introduced by Forney, with decision criterion FR. From this bound, they derived two significant bounds. One is the Shulman-Feder bound for generalized decoding (GD) with the binary-input output-symmetric channel. The other is an upper bound for an ensemble of linear block codes, by applying the average complete weight distribution directly to the DS2 bound for GD. For the Shulman-Feder bound for GD, the authors derived a condition under which an upper bound is minimized at an intermediate step and show that this condition yields a new bound which is tighter than Hof et al.'s bound. In this paper, we first extend this result for non-binary linear block codes used over a class of symmetric channels called the regular channel. Next, we derive a new tighter bound for an ensemble of linear block codes, which is based on the average weight distribution.
Ken-ichiro MORIDOMI Kohei HATANO Eiji TAKIMOTO
We prove generalization error bounds of classes of low-rank matrices with some norm constraints for collaborative filtering tasks. Our bounds are tighter, compared to known bounds using rank or the related quantity only, by taking the additional L1 and L∞ constraints into account. Also, we show that our bounds on the Rademacher complexity of the classes are optimal.
Tatsuro KOJO Masashi TAWADA Masao YANAGISAWA Nozomu TOGAWA
Non-volatile memories are a promising alternative to memory design but data stored in them still may be destructed due to crosstalk and radiation. The data stored in them can be restored by using error-correcting codes but they require extra bits to correct bit errors. One of the largest problems in non-volatile memories is that they consume ten to hundred times more energy than normal memories in bit-writing. It is quite necessary to reduce writing bits. Recently, a REC code (bit-write-reducing and error-correcting code) is proposed for non-volatile memories which can reduce writing bits and has a capability of error correction. The REC code is generated from a linear systematic error-correcting code but it must include the codeword of all 1's, i.e., 11…1. The codeword bit length must be longer in order to satisfy this condition. In this letter, we propose a method to generate a relaxed REC code which is generated from a relaxed error-correcting code, which does not necessarily include the codeword of all 1's and thus its codeword bit length can be shorter. We prove that the maximum flipping bits of the relaxed REC code is still limited theoretically. Experimental results show that the relaxed REC code efficiently reduce the number of writing bits.
Naohiro TODA Tetsuya NAKAGAMI Yoichi YAMAZAKI Hiroki YOSHIOKA Shuji KOYAMA
In X-ray computed tomography, scattered X-rays are generally removed by using a post-patient collimator located in front of the detector. In this paper, we show that the scattered X-rays have the potential to improve the estimation accuracy of the attenuation coefficient in computed tomography. In order to clarify the problem, we simplified the geometry of the computed tomography into a thin cylinder composed of a homogeneous material so that only one attenuation coefficient needs to be estimated. We then conducted a Monte Carlo numerical experiment on improving the estimation accuracy of attenuation coefficient by measuring the scattered X-rays with several dedicated toroidal detectors around the cylinder in addition to the primary X-rays. We further present a theoretical analysis to explain the experimental results. We employed a model that uses a T-junction (i.e., T-junction model) to divide the photon transport into primary and scattered components. This division is processed with respect to the attenuation coefficient. Using several T-junction models connected in series, we modeled the case of several scatter detectors. The estimation accuracy was evaluated according to the variance of the efficient estimator, i.e., the Cramer-Rao lower bound. We confirmed that the variance decreases as the number of scatter detectors increases, which implies that using scattered X-rays can reduce the irradiation dose for patients.
In this paper, we propose a boundary-aware superpixel segmentation method, which could quickly and exactly extract superpixel with a non-iteration framework. The basic idea is to construct a minimum spanning tree (MST) based on structure edge to measure the local similarity among pixels, and then label each pixel as the index with shortest path seeds. Intuitively, we first construct MST on the original pixels with boundary feature to calculate the similarity of adjacent pixels. Then the geodesic distance between pixels can be exactly obtained based on two-round tree recursions. We determinate pixel label as the shortest path seed index. Experimental results on BSD500 segmentation benchmark demonstrate the proposed method obtains best performance compared with seven state-of-the-art methods. Especially for the low density situation, our method can obtain the boundary-aware oversegmentation region.
Yanqing REN Zhiyu LU Daming WANG Jian LIU
The Localization of distributed sources has attracted significant interest recently. There mainly are two types of localization methods which are able to estimate distributed source positions: two-step methods and direct localization methods. Unfortunately, both fail to exploit the location information and so suffer a loss in localization accuracy. By utilizing the information not used in the above, a direct localization method of multiple distributed sources is proposed in this paper that offers improved location accuracy. We construct a direct localization model of multiple distributed sources and develop a direct localization estimator with the theory of multiple signal classification. The distributed source positions are estimated via a three-dimensional grid search. We also provide Cramer-Rao Bound, computational complexity analysis and Monte Carlo simulations. The simulations demonstrate that the proposed method outperforms the localization methods above in terms of accuracy and resolution.
Yinghui ZHANG Hongjun WANG Hengxue ZHOU Ping DENG
Image boundary detection or image segmentation is an important step in image analysis. However, choosing appropriate parameters for boundary detection algorithms is necessary to achieve good boundary detection results. Image boundary detection fusion with unsupervised parameters can output a final consensus boundary, which is generally better than using unsupervised or supervised image boundary detection algorithms. In this study, we theoretically examine why image boundary detection fusion can work well and we propose a mixture model for image boundary detection fusion (MMIBDF) to achieve good consensus segmentation in an unsupervised manner. All of the segmentation algorithms are treated as new features and the segmentation results obtained by the algorithms are the values of the new features. The MMIBDF is designed to sample the boundary according to a discrete distribution. We present an inference method for MMIBDF and describe the corresponding algorithm in detail. Extensive empirical results demonstrate that MMIBDF significantly outperforms other image boundary detection fusion algorithms and the base image boundary detection algorithms according to most performance indices.
Ryo WATANABE Junpei KOMIYAMA Atsuyoshi NAKAMURA Mineichi KUDO
We propose a policy UCB-SC for budgeted multi-armed bandits. The policy is a variant of recently proposed KL-UCB-SC. Unlike KL-UCB-SC, which is computationally prohibitive, UCB-SC runs very fast while keeping KL-UCB-SC's asymptotical optimality when reward and cost distributions are Bernoulli with means around 0.5, which are verified both theoretically and empirically.
Hikaru ICHISE Yong JIN Katsuyoshi IIDA
There have been several recent reports that botnet communication between bot-infected computers and Command and Control servers (C&C servers) using the Domain Name System (DNS) protocol has been used by many cyber attackers. In particular, botnet communication based on the DNS TXT record type has been observed in several kinds of botnet attack. Unfortunately, the DNS TXT record type has many forms of legitimate usage, such as hostname description. In this paper, in order to detect and block out botnet communication based on the DNS TXT record type, we first differentiate between legitimate and suspicious usages of the DNS TXT record type and then analyze real DNS TXT query data obtained from our campus network. We divide DNS queries sent out from an organization into three types — via-resolver, and indirect and direct outbound queries — and analyze the DNS TXT query data separately. We use a 99-day dataset for via-resolver DNS TXT queries and an 87-day dataset for indirect and direct outbound DNS TXT queries. The results of our analysis show that about 30%, 8% and 19% of DNS TXT queries in via-resolver, indirect and direct outbound queries, respectively, could be identified as suspicious DNS traffic. Based on our analysis, we also consider a comprehensive botnet detection system and have designed a prototype system.
Strategic Dual Image method (SDI) for three-dimensional magnetic field problems is proposed. The basic idea of the SDI method is that the open boundary solution is in-between the Dirichlet and Neumann solutions. The relationship between the specific topology (e.g. sphere, and ellipsoid) of the boundary and the averaging weight has been discussed in the previous literature, however no discussions on the arbitrary topology. In this paper, combined with “the perturbation approach using equivalence theorem”, the methodology to derive the averaging weight of Dirichlet and Neumann solutions on the arbitrary topology has been proposed. Some numerical examples are also demonstrated.
Takashi NAGASAKA Kazuya KOBAYASHI
The problem of E-polarized plane wave diffraction by a thin material strip is analyzed using the Wiener-Hopf technique together with approximate boundary conditions. Exact and high-frequency asymptotic solutions are obtained. Our final solution is valid for the case where the strip thickness is small and the strip width is large in comparison to the wavelength. The scattered field is evaluated asymptotically based on the saddle point method and a far field expression is derived. Numerical examples on the radar cross section (RCS) are presented for various physical parameters and the scattering characteristics of the strip are discussed in detail.
In this paper, the Voronoi region of the transmitted codeword is employed to improve the sphere bound on the maximum-likelihood decoding (MLD) performance of binary linear block codes over additive white Gaussian noise (AWGN) channels. We obtain the improved sphere bounds both on the frame-error probability and the bit-error probability. With the framework of the sphere bound proposed by Kasami et al., we derive the conditional decoding error probability on the spheres by defining a subset of the Voronoi region of the transmitted codeword, since the Voronoi regions of a binary linear block code govern the decoding error probability analysis over AWGN channels. The proposed bound improves the sphere bound by Kasami et al. and the sphere bound by Herzberg and Poltyrev. The computational complexity of the proposed bound is similar to that of the sphere bound by Kasami et al.
Constant weight codes have mathematical interest and practical applications such as coding for bandwidth-efficient channels and construction of spherical codes for modulation. In this letter, by using difference balanced functions with d-form property, we constructed a class of constant composition code with new parameters, which achieves the equal sign of generalized Johnson bound.
Constant composition codes (CCCs) are a special class of constant-weight codes. They include permutation codes as a subclass. The study and constructions of CCCs with parameters meeting certain bounds have been an interesting research subject in coding theory. A bridge from zero difference balanced (ZDB) functions to CCCs with parameters meeting the Luo-Fu-Vinck-Chen bound has been established by Ding (IEEE Trans. Information Theory 54(12) (2008) 5766-5770). This provides a new approach for obtaining optimal CCCs. The objective of this letter is to construct two classes of ZDB functions whose parameters not covered in the literature, and then obtain two classes of optimal CCCs meeting the Luo-Fu-Vinck-Chen bound from these new ZDB functions.
Takayoshi SHOUDAI Takashi YAMADA
This paper deals with a problem to decide whether a given graph structure appears as a pattern in the structure of a given graph. A graph pattern is a triple p=(V,E,H), where (V,E) is a graph and H is a set of variables, which are ordered lists of vertices in V. A variable can be replaced with an arbitrary connected graph by a kind of hyperedge replacements. A substitution is a collection of such replacements. The graph pattern matching problem (GPMP) is the computational problem to decide whether or not a given graph G is obtained from a given graph pattern p by a substitution. In this paper, we show that GPMP for a graph pattern p and a graph G is solvable in polynomial time if the length of every variable in p is 2, p is of bounded treewidth, and G is connected.
In this letter, we focus on a system where N sources send n ≤ N different packets to one destination, through M ≥ N relays. Each relay employs random linear network coding to encode the packets it received by randomly choosing coefficients in a finite field Fq, then forwards it to the destination. Owing to the inherent errorprone nature of erasure channels, data packets received by the relay and the destination nodes may not be correct. We analyze the optimal throughput with respect to n, given a series of parameters and derive the upper and lower bounds of throughput performance. We also analyze the impact of the number of relays and the erasure probability on the throughput performance. Simulation results are well matched with the theoretical analysis.
Locally repairable codes (LRCs) have attracted much interest recently due to their applications in distributed storage systems. In an [n,k,d] linear code, a code symbol is said to have locality r if it can be repaired by accessing at most r other code symbols. An (n,k,r) LRC with locality r for the information symbols has minimum distance d≤n-k-⌈k/r⌉+2. In this letter, we study single-parity LRCs where every repair group contains exactly one parity symbol. Firstly, we give a new characterization of single-parity LRCs based on the standard form of generator matrices. For the optimal single-parity LRCs meeting the Singleton-like bound, we give necessary conditions on the structures of generator matrices. Then we construct all the optimal binary single-parity LRCs meeting the Singleton-like bound d≤n-k-⌈k/r⌉+2.
Masayuki SUZUKI Ryo KUROIWA Keisuke INNAMI Shumpei KOBAYASHI Shinya SHIMIZU Nobuaki MINEMATSU Keikichi HIROSE
When synthesizing speech from Japanese text, correct assignment of accent nuclei for input text with arbitrary contents is indispensable in obtaining naturally-sounding synthetic speech. A phenomenon called accent sandhi occurs in utterances of Japanese; when a word is uttered in a sentence, its accent nucleus may change depending on the contexts of preceding/succeeding words. This paper describes a statistical method for automatically predicting the accent nucleus changes due to accent sandhi. First, as the basis of the research, a database of Japanese text was constructed with labels of accent phrase boundaries and accent nucleus positions when uttered in sentences. A single native speaker of Tokyo dialect Japanese annotated all the labels for 6,344 Japanese sentences. Then, using this database, a conditional-random-field-based method was developed using this database to predict accent phrase boundaries and accent nuclei. The proposed method predicted accent nucleus positions for accent phrases with 94.66% accuracy, clearly surpassing the 87.48% accuracy obtained using our rule-based method. A listening experiment was also conducted on synthetic speech obtained using the proposed method and that obtained using the rule-based method. The results show that our method significantly improved the naturalness of synthetic speech.
Jinwoo LEE Jae Woo SEO Kookrae CHO Pil Joong LEE Dae Hyun YUM
The Android pattern unlock is a widely adopted graphical password system that requires a user to draw a secret pattern connecting points arranged in a grid. The theoretical security of pattern unlock can be defined by the number of possible patterns. However, only upper bounds of the number of patterns have been known except for 3×3 and 4×4 grids for which the exact number of patterns was found by brute-force enumeration. In this letter, we present the first lower bound by computing the minimum number of visible points from each point in various subgrids.
Wanchun LI Ting YUAN Bin WANG Qiu TANG Yingxiang LI Hongshu LIAO
In this paper, we explore the relationship between Geometric Dilution of Precision (GDOP) and Cramer-Rao Bound (CRB) by tracing back to the original motivations for deriving these two indexes. In addition, the GDOP is served as a sensor-target geometric uncertainty analysis tool whilst the CRB is served as a statistical performance evaluation tool based on the sensor observations originated from target. And CRB is the inverse matrix of Fisher information matrix (FIM). Based on the original derivations for a same positioning application, we interpret their difference in a mathematical view to show that.