The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] channel selection(10hit)

1-10hit
  • Mitigating Throughput Starvation in Dense WLANs through Potential Game-Based Channel Selection

    Bo YIN  Shotaro KAMIYA  Koji YAMAMOTO  Takayuki NISHIO  Masahiro MORIKURA  Hirantha ABEYSEKERA  

     
    PAPER-Communication Systems

      Vol:
    E100-A No:11
      Page(s):
    2341-2350

    Distributed channel selection schemes are proposed in this paper to mitigate the flow-in-the-middle (FIM) starvation in dense wireless local area networks (WLANs). The FIM starvation occurs when the middle transmitter is within the carrier sense range of two exterior transmitters, while the two exterior transmitters are not within the carrier sense range of each other. Since an exterior transmitter sends a frame regardless of the other, the middle transmitter has a high probability of detecting the channel being occupied. Under heavy traffic conditions, the middle transmitter suffers from extremely low transmission opportunities, i.e., throughput starvation. The basic idea of the proposed schemes is to let each access point (AP) select the channel which has less three-node-chain topologies within its two-hop neighborhood. The proposed schemes are formulated in strategic form games. Payoff functions are designed so that they are proved to be potential games. Therefore, the convergence is guaranteed when the proposed schemes are conducted in a distributed manner by using unilateral improvement dynamics. Moreover, we conduct evaluations through graph-based simulations and the ns-3 simulator. Simulations confirm that the FIM starvation has been mitigated since the number of three-node-chain topologies has been significantly reduced. The 5th percentile throughput has been improved.

  • Game-Theoretic Analysis of Multibandwidth Channel Selection by Coordinated APs in WLANs

    Kohei HANADA  Koji YAMAMOTO  Masahiro MORIKURA  Koichi ISHIHARA  Riichi KUDO  

     
    PAPER

      Vol:
    E96-B No:6
      Page(s):
    1277-1287

    As the demand for high-throughput communications in wireless LANs (WLAN) increases, the need for expanding channel bandwidth also increases. However, the use of wider band channels results in a decrease in the number of available channels because the total available bandwidth for WLAN is limited. Therefore, if multiple access points (APs) are in proximity and the cells overlap, it is difficult for each AP to use an orthogonal channel and competition increases between APs using the same channel. Coordination of APs is one promising approach; however, it is impractical to control all APs in WLAN systems. To cope with this problem, we proposed to analyze throughput performances of a multibandwidth channel selection by the coordinating APs at Nash equilibria, which can be considered as operating points for independent channel selection by APs. To clarify the effect of coordinating APs, we assume a simple scenario where the cells of three or more APs overlap, and each AP can select multibandwidth channels to maximize their own throughput. Through game-theoretic analysis, we find that the coordinated APs are able to select channels more effectively than if each AP independently selects channels. Consequently, the total throughput of the coordinated APs at Nash equilibria is significantly improved.

  • A 120 GHz/140 GHz Dual-Channel OOK Receiver Using 65 nm CMOS Technology

    Ryuichi FUJIMOTO  Mizuki MOTOYOSHI  Kyoya TAKANO  Minoru FUJISHIMA  

     
    PAPER

      Vol:
    E96-A No:2
      Page(s):
    486-493

    The design and measured results of a 120 GHz/140 GHz dual-channel OOK (ON-OFF Keying) receiver are presented in this paper. Because a signal with very wide frequency width is difficult to process in a single-channel receiver, a dual-channel configuration with channel selection is adopted in the proposed receiver. The proposed receiver is fabricated using 65 nm CMOS technology. The measured data rate of 3.0 and 3.6 Gbps, minimum sensitivity of -25.6 and -27.1 dBm, communication distance of 0.30 and 0.38 m are achieved in the 120- and 140-GHz receiver, respectively. The correct channel selection is achieved in the 120-GHz receiver. These results indicate the possibility of the CMOS multiband receiver operating at over 100 GHz for low-power high-speed proximity wireless communication systems.

  • Distributed Channel Selection in CRAHNs with Heterogeneous Spectrum Opportunities: A Local Congestion Game Approach

    Yuhua XU  Qihui WU  Jinlong WANG  Neng MIN  Alagan ANPALAGAN  

     
    LETTER-Network

      Vol:
    E95-B No:3
      Page(s):
    991-994

    This letter investigates the problem of distributed channel selection in cognitive radio ad hoc networks (CRAHNs) with heterogeneous spectrum opportunities. Firstly, we formulate this problem as a local congestion game, which is proved to be an exact potential game. Then, we propose a spatial best response dynamic (SBRD) to rapidly achieve Nash equilibrium via local information exchange. Moreover, the potential function of the game reflects the network collision level and can be used to achieve higher throughput.

  • Conditionally Randomized Channel Selection Algorithm for Multi-Channel MAC Protocol in Ad Hoc Networks

    Bin HAN  Ken'ichi KAWANISHI  

     
    PAPER-Network

      Vol:
    E94-B No:4
      Page(s):
    940-950

    The Medium Access Control (MAC) protocol that uses non-overlapping multiple channels, called the multi-channel MAC protocol, was proposed in order to increase the capacity of ad hoc networks. Since the number of packet interfaces on each node is less than the number of channels in ad hoc networks in general, the node needs to select a suitable channel for data transmission. This means that the multi-channel MAC protocol must be provided with a good channel selection algorithm. In this paper, we design a channel selection algorithm called Conditionally Randomized Channel Selection (CRCS) based on Extended Receiver Directed Transmission (xRDT) protocol that only uses one packet interface. Briefly, CRCS uses the acitve channel for data transmission until the amount of data packets reaches a threshold, at which point it selects one of the available channels other than the active channel. Although CRCS is a very simple channel selection algorithm, by using network simulator we find that CRCS is effective to increase the capacity of ad hoc networks and to keep the load balance of all channels compared to the other channel selection algorithms.

  • Architecture and Design of IP Broadcasting System Using Passive Optical Network

    Hiroki IKEDA  Jun SUGAWA  Yoshihiro ASHI  Kenichi SAKAMOTO  

     
    PAPER

      Vol:
    E91-B No:8
      Page(s):
    2477-2484

    We propose an IP broadcasting system architecture using passive optical networks (PON) utilizing the optical broadcast links of a PON with a downstream bandwidth allocation algorithm to provide a multi-channel IP broadcasting service to home subscribers on single broadband IP network infrastructures. We introduce the design and adaptation of the optical broadcast links to effectively broadcast video contents to home subscribers. We present a performance analysis that includes the downstream bandwidth utilization efficiency of the broadcast link and the bandwidth control of the IP broadcasting and Internet data. Our analysis and simulation results show that the proposed system can provide 100 HDTV channels to every user over fiber lines. We also propose an IPTV channel selection mechanism in an ONT by selecting a broadcast stream. We developed and evaluated a prototype that can achieve a 15-msec IPTV channel selection speed.

  • Dynamic Channel Selection with Snooping for Multi-Channel Multi-Hop Wireless Networks

    Myunghwan SEO  Joongsoo MA  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E91-B No:8
      Page(s):
    2752-2756

    The dynamic channel selection mechanism used in existing multi-channel MAC protocols selects an idle data channel based on channel usage information from one-hop neighbor nodes. However, this method can cause multi-channel hidden node problem in multi-hop wireless networks. This letter proposes a new approach to channel selection. Nodes snoop data channels during idle times and then select an idle data channel within the carrier sensing range using both the snooping results and the channel usage information. Our simulation results verify that the proposed channel selection approach can effectively avoid the multi-channel hidden node problem and improve the networkwide performance.

  • Channel Allocation Algorithms for Coexistence of LR-WPAN with WLAN

    Sangjin HAN  Sungjin LEE  Sanghoon LEE  Yeonsoo KIM  

     
    LETTER-Network

      Vol:
    E91-B No:5
      Page(s):
    1627-1631

    This paper presents a coexistence model of IEEE 802.15.4 with IEEE 802.11b interference in fading channels and proposes two adaptive channel allocation schemes. The first avoids the IEEE 802.15.4 interference only and the second avoids both of the IEEE 802.15.4 and IEEE 802.11b interferences. Numerical results show that the proposed algorithms are effective for avoiding interferences and for maximizing network capacity since they select a channel which gives the maximum signal to noise ratio to the system.

  • Modeling CDPD Channel Holding Times

    Yi-Bing LIN  Phone LIN  Yu-Min CHUANG  

     
    PAPER-Wireless Communication Technology

      Vol:
    E83-B No:9
      Page(s):
    2051-2055

    Cellular Digital Packet Data (CDPD) provides wireless data communication services to mobile users by sharing unused RF channels with AMPS on a non-interfering basis. To prevent interference on the voice activities, CDPD makes forced hop to a channel stream when a voice request is about to use the RF channel occupied by the channel stream. The number of forced hops is affected by the voice channel selection policy. We propose analytic models to investigate the CDPD channel holding time for the the least-idle and random voice channel selection policies. Under various system parameters and voice channel selection policies, we provide guidelines to reduce the number of forced hops.

  • Broadband and Flexible Receiver Architecture for Software Defined Radio Terminal Using Direct Conversion and Low-IF Principle

    Hiroshi TSURUMI  Hiroshi YOSHIDA  Shoji OTAKA  Hiroshi TANIMOTO  Yasuo SUZUKI  

     
    PAPER

      Vol:
    E83-B No:6
      Page(s):
    1246-1253

    A broadband and flexible receiver architecture is investigated for the handheld software defined radio (SDR). The proposed SDR architecture is based on the direct conversion and low intermediate frequency (low-IF) principle with digital channel filtering, which provides the receiver with flexibility for the multi-standard application. This architecture also enables analog-to-digital converter activating essentially in baseband or low frequency so that the clock jitter, which serves as an important subject in the well-known IF sampling method, can be reduced. Basic performance of the proposed architecture has been confirmed by the experimental model.