Kai IKUTA Jinya NAKAMURA Moriya NAKAMURA
In this paper, we investigated the overfitting characteristics of nonlinear equalizers based on an artificial neural network (ANN) and the Volterra series transfer function (VSTF), which were designed to compensate for optical nonlinear waveform distortion in optical fiber communication systems. Linear waveform distortion caused by, e.g., chromatic dispersion (CD) is commonly compensated by linear equalizers using digital signal processing (DSP) in digital coherent receivers. However, mitigation of nonlinear waveform distortion is considered to be one of the next important issues. An ANN-based nonlinear equalizer is one possible candidate for solving this problem. However, the risk of overfitting of ANNs is one obstacle in using the technology in practical applications. We evaluated and compared the overfitting of ANN- and conventional VSTF-based nonlinear equalizers used to compensate for optical nonlinear distortion. The equalizers were trained on repeated random bit sequences (RRBSs), while varying the length of the bit sequences. When the number of hidden-layer units of the ANN was as large as 100 or 1000, the overfitting characteristics were comparable to those of the VSTF. However, when the number of hidden-layer units was 10, which is usually enough to compensate for optical nonlinear distortion, the overfitting was weaker than that of the VSTF. Furthermore, we confirmed that even commonly used finite impulse response (FIR) filters showed overfitting to the RRBS when the length of the RRBS was equal to or shorter than the length of the tapped delay line of the filters. Conversely, when the RRBS used for the training was sufficiently longer than the tapped delay line, the overfitting could be suppressed, even when using an ANN-based nonlinear equalizer with 10 hidden-layer units.
Yuqiang ZHANG Huamin YANG Cheng HAN Chao ZHANG Chaoran ZHU
In this paper, we present a novel photometric compensation network named CASEformer, which is built upon the Swin module. For the first time, we combine coordinate attention and channel attention mechanisms to extract rich features from input images. Employing a multi-level encoder-decoder architecture with skip connections, we establish multiscale interactions between projection surfaces and projection images, achieving precise inference and compensation. Furthermore, through an attention fusion module, which simultaneously leverages both coordinate and channel information, we enhance the global context of feature maps while preserving enhanced texture coordinate details. The experimental results demonstrate the superior compensation effectiveness of our approach compared to the current state-of-the-art methods. Additionally, we propose a method for multi-surface projection compensation, further enriching our contributions.
Xiaohu WANG Yubin DUAN Yi WEI Xinyuan CHEN Huang ZHUN Chaohui ZHAO
With the gradually increase of the application of new energy in microgrids, Electric Spring (ES), as a new type of distributed compensation power electronic device has been widely studied. The Generalized Electric Spring (G-ES) is an improved topology, and the space limitation problem in the traditional topology is solved. Because of the mode of G-ES use in the power grid, a reasonable solution to the voltage loss of the critical section feeder is needed. In this paper, the voltage balance equation based on the feedforward compensation coefficient is established, and a two cascade control strategy based on the equation is studied. The first stage of the two cascade control strategy is to use communication means to realize the allocation of feedforward compensation coefficients, and the second stage is to use the coefficients to realize feedforward fixed angle control. Simulation analysis shows that the proposed control strategy does not affect the control accuracy of the critical load (CL), and effectively improves the operational range of the G-ES.
Akihito HIRAI Yuki TSUKUI Koji TSUTSUMI Kazutomi MORI
This paper demonstrates a phase compensation technique using varactors for variable-gain phase shifters (VGPSs). The VGPS consists of an I/Q generator and I/Q variable gain amplifiers (I/Q VGAs). I/Q VGAs based on common-emitter stages are enabled to control the gain by adjusting the collector current of the transistor. However, the phase control performance degenerates because the input capacitance varies with the collector current. The proposed phase compensation technique reduces the variation in the insertion phase of the I/Q VGA by adjusting the voltage of the varactor provided at its input and maintaining the input capacitance constant in any gain state. As a result, the VGPS can provide a low phase and amplitude error under phase control. A Ka-band VGPS with the proposed phase compensation technique, fabricated in a 130-nm SiGe BiCMOS process, demonstrates a 0.73° and 0.06 dB improvement in the RMS phase and amplitude error compared with the case without the compensation technique. The VGPS achieves measured RMS amplitude and phase errors of less than 0.19 dB and 0.75°, respectively, in an amplitude control range of more than 20 dB with a frequency range of 28 to 32 GHz.
Feng TIAN Wan LIU Weibo FU Xiaojun HUANG
Intelligent traffic monitoring provides information support for autonomous driving, which is widely used in intelligent transportation systems (ITSs). A method for estimating vehicle moving target parameters based on millimeter-wave radars is proposed to solve the problem of low detection accuracy due to velocity ambiguity and Doppler-angle coupling in the process of traffic monitoring. First of all, a MIMO antenna array with overlapping elements is constructed by introducing them into the typical design of MIMO radar array antennas. The motion-induced phase errors are eliminated by the phase difference among the overlapping elements. Then, the position errors among them are corrected through an iterative method, and the angle of multiple targets is estimated. Finally, velocity disambiguation is performed by adopting the error-corrected phase difference among the overlapping elements. An accurate estimation of vehicle moving target angle and velocity is achieved. Through Monte Carlo simulation experiments, the angle error is 0.1° and the velocity error is 0.1m/s. The simulation results show that the method can be used to effectively solve the problems related to velocity ambiguity and Doppler-angle coupling, meanwhile the accuracy of velocity and angle estimation can be improved. An improved algorithm is tested on the vehicle datasets that are gathered in the forward direction of ordinary public scenes of a city. The experimental results further verify the feasibility of the method, which meets the real-time and accuracy requirements of ITSs on vehicle information monitoring.
Yasushi YAMAO Tetsuki TANIGUCHI Hiroki ITO
High-accuracy wideband signal transmission is essential for 5G and Beyond wireless communication systems. Memory nonlinearity in transmitters is a serious issue for the goal, because it deteriorates the quality of signal and lowers the system performance. This paper studies a post-reception nonlinear compensation (PRC) schemes consisting of frequency domain equalizers (FDEs) and a blind nonlinear compensator (BNLC). A frequency-domain memory nonlinearity modeling approach is employed, and several PRC configurations with FDEs and BNLC are evaluated through computer simulations. It is concluded that the proposed PRC schemes can effectively compensate memory nonlinearity in wideband transmitters via frequency-selective propagation channel. By implementing the PRC in a base station, uplink performance will be enhanced without any additional cost and power consumption in user terminals.
Shinsei YOSHIKIYO Naoko MISAWA Kasidit TOPRASERTPONG Shinichi TAKAGI Chihiro MATSUI Ken TAKEUCHI
This paper proposes a layer-wise tunable retraining method for edge FeFET Computation-in-Memory (CiM) to compensate the accuracy degradation of neural network (NN) by FeFET device errors. The proposed retraining can tune the number of layers to be retrained to reduce inference accuracy degradation by errors that occur after retraining. Weights of the original NN model, accurately trained in cloud data center, are written into edge FeFET CiM. The written weights are changed by FeFET device errors in the field. By partially retraining the written NN model, the proposed method combines the error-affected layers of NN model with the retrained layers. The inference accuracy is thus recovered. After retraining, the retrained layers are re-written to CiM and affected by device errors again. In the evaluation, at first, the recovery capability of NN model by partial retraining is analyzed. Then the inference accuracy after re-writing is evaluated. Recovery capability is evaluated with non-volatile memory (NVM) typical errors: normal distribution, uniform shift, and bit-inversion. For all types of errors, more than 50% of the degraded percentage of inference accuracy is recovered by retraining only the final fully-connected (FC) layer of Resnet-32. To simulate FeFET Local-Multiply and Global-accumulate (LM-GA) CiM, recovery capability is also evaluated with FeFET errors modeled based on FeFET measurements. Retraining only FC layer achieves recovery rate of up to 53%, 66%, and 72% for FeFET write variation, read-disturb, and data-retention, respectively. In addition, just adding two more retraining layers improves recovery rate by 20-30%. In order to tune the number of retraining layers, inference accuracy after re-writing is evaluated by simulating the errors that occur after retraining. When NVM typical errors are injected, it is optimal to retrain FC layer and 3-6 convolution layers of Resnet-32. The optimal number of layers can be increased or decreased depending on the balance between the size of errors before retraining and errors after retraining.
Yuri KANAZAWA Prasoon AMBALATHANKANDY Masayuki IKEBE
We have developed a Si-CMOS terahertz image sensor to address the paucity of low-cost terahertz detectors. Our imaging pixel directly connects to a VCO-based ADC and achieves pixel parallel ADC architecture for high-speed global shutter THz imaging. In this paper, we propose a digital calibration technique for offset and gain variation of each pixel using global shutter operation. The calibration technique gives reference signal to all pixels simultaneously and takes reference frames as a part of the high-speed image captures. Using this technique, we achieve offset/non-linear gain variation suppression of 85.7% compared to without correction.
Xiangyu MENG Kangfeng WEI Zhiyi YU Xinlun CAI
This paper proposes a low-power 100Gb/s four-level pulse amplitude modulation driver (PAM-4 Driver) based on linear distortion compensation structure for thin-film Lithium Niobate (LiNbO3) modulators, which manages to achieve high linearity in the output. The inductive peaking technology and open drain structure enable the overall circuit to achieve a 31-GHz bandwidth. With an area of 0.292 mm2, the proposed PAM-4 driver chip is designed in a 65-nm process to achieve power consumption of 37.7 mW. Post-layout simulation results show that the power efficiency is 0.37 mW/Gb/s, RLM is more than 96%, and the FOM value is 8.84.
In this study, AM-PM compensation of the cross-coupled capacitance neutralization technique is discussed. Cgd neutralization leads to AM-PM compensation of a power amplifier with negligible change of AM-AM characteristics. AM-PM compensation was confirmed via circuit analysis and measurements. The formulation analysis showed that AM-PM compensation can be derived via gm variation against input power with capacitance neutralization. A differential power amplifier with capacitance neutralization was fabricated with GaN high-electron-mobility transistors. The AM-PM characteristic of the fabricated differential power amplifier was measured at 17.7 GHz. It showed AM-PM reduction of 22° at compared to a single-phase power amplifier without capacitance neutralization at output power of 35 dBm.
Jun NAGAI Koji ISHIBASHI Yasushi YAMAO
The non-orthogonal multiple access (NOMA) approach has been developed in the fifth-generation mobile communication systems (5G) and beyond, to improve the spectrum efficiency and accommodate a large number of IoT devices. Although power domain NOMA is a promising candidate, it is vulnerable to the nonlinearity of RF circuits and cannot achieve high-throughput transmission using high-level modulations in nonlinear environments. This study proposes a novel post-reception nonlinear compensation scheme consisting of two blind nonlinear compensators (BNLCs) and a frequency-domain equalizer (FDE) to reduce the effect of nonlinear distortion. The improvement possible with the proposed scheme is evaluated by using the error vector magnitude (EVM) of the received signal, which is obtained through computer simulations. The simulation results confirm that the proposed scheme can effectively improve the quality of the received downlink power-domain NOMA signal and enable high-throughput transmission under the transmitter (Tx) and receiver (Rx) nonlinearities via a frequency-selective fading channel.
Hao ZHOU Zhuangzhuang ZHANG Yun LIU Meiyan XUAN Weiwei JIANG Hailing XIONG
Single image dehazing algorithm based on Dark Channel Prior (DCP) is widely known. More and more image dehazing algorithms based on DCP have been proposed. However, we found that it is more effective to use DCP in the RAW images before the ISP pipeline. In addition, for the problem of DCP failure in the sky area, we propose an algorithm to segment the sky region and compensate the transmission. Extensive experimental results on both subjective and objective evaluation demonstrate that the performance of the modified DCP (MDCP) has been greatly improved, and it is competitive with the state-of-the-art methods.
Yu WANG Tao LU Feng YAO Yuntao WU Yanduo ZHANG
In recent years, single face image super-resolution (SR) using deep neural networks have been well developed. However, most of the face images captured by the camera in a real scene are from different views of the same person, and the existing traditional multi-frame image SR requires alignment between images. Due to multi-view face images contain texture information from different views, which can be used as effective prior information, how to use this prior information from multi-views to reconstruct frontal face images is challenging. In order to effectively solve the above problems, we propose a novel face SR network based on multi-view face images, which focus on obtaining more texture information from multi-view face images to help the reconstruction of frontal face images. And in this network, we also propose a texture attention mechanism to transfer high-precision texture compensation information to the frontal face image to obtain better visual effects. We conduct subjective and objective evaluations, and the experimental results show the great potential of using multi-view face images SR. The comparison with other state-of-the-art deep learning SR methods proves that the proposed method has excellent performance.
Shiori YAMAGUCHI Keita HIRAI Takahiko HORIUCHI
In this study, we present a novel method for removing smoke from videos based on a single image sequence. Smoke is a significant artifact in images or videos because it can reduce the visibility in disaster scenes. Our proposed method for removing smoke involves two main processes: (1) the development of a smoke imaging model and (2) smoke removal using spatio-temporal pixel compensation. First, we model the optical phenomena in natural scenes including smoke, which is called a smoke imaging model. Our smoke imaging model is developed by extending conventional haze imaging models. We then remove the smoke from a video in a frame-by-frame manner based on the smoke imaging model. Next, we refine the appearance of the smoke-free video by spatio-temporal pixel compensation, where we align the smoke-free frames using the corresponding pixels. To obtain the corresponding pixels, we use SIFT and color features with distance constraints. Finally, in order to obtain a clear video, we refine the pixel values based on the spatio-temporal weightings of the corresponding pixels in the smoke-free frames. We used simulated and actual smoke videos in our validation experiments. The experimental results demonstrated that our method can obtain effective smoke removal results from dynamic scenes. We also quantitatively assessed our method based on a temporal coherence measure.
Robert Chen-Hao CHANG Wei-Chih CHEN Shao-Che SU
A switching-based Li-ion battery charger without any additional compensation circuit is proposed. The proposed charger adopts a dual-current sensor and a current window control to ensure system stability in different charge modes: trickle current, constant current, and constant voltage. The proposed Li-ion battery charger has less chip area and a simpler structure to design than a conventional Li-ion battery charger with pulse width modulation. Simulation with a 1000µF capacitor as the battery equivalent, a 5V input, and a 1A charge current resulted in a charging time of 1.47ms and a 91% power efficiency.
Guoqiang ZHANG Lingjin CAO Kosuke YAYAMA Akio KATSUSHIMA Takahiro MIKI
A differential on chip oscillator (OCO) is proposed in this paper for low supply voltage, high frequency accuracy and fast startup. The differential architecture helps the OCO achieve a good power supply rejection ratio (PSRR) without using a regulator so as to make the OCO suitable for a low power supply voltage of 1.38V. A reference voltage generator is also developed to generate two output voltages lower than Vbe for low supply voltage operation. The output frequency is locked to 48MHz by a frequency-locked loop (FLL) and a 3.3-ppm/°C temperature coefficient of frequency is realized by the differential voltage ratio adjusting (differential VRA) technique. The startup time is only 1.47μs because the differential OCO is not necessary to charge a big capacitor for ripple reduction.
Yoshiki SUGIMOTO Hiroyuki ARAI
The phaseless antenna measurement technique is advantageous for high-frequency near-field measurements in which the uncertainty of the measured phase is a problem. In the phaseless measurement, which is expected to be used in the frequency band with a short wavelength, a slight positional deviation error of the probe greatly deteriorates the measurement result. This paper proposes a phase retrieval method that can compensate the measurement errors caused by misalignment of a probe and its jig. And this paper proposes a far-field estimation method by phase resurrection that incorporated the compensation techniques. We find that the positioning errors are due to the random errors occurring at each measurement point because of minute vibrations of the probe; in addition, we determine that the stationary depth errors occurring at each measurement surface as errors caused by improper setting of the probe jig. The random positioning error is eliminated by adding a low-pass filter in wavenumber space, and the depth positioning error is iteratively compensated on the basis of the relative residual obtained in each plane. The validity of the proposed method is demonstrated by estimating the far-field patterns using the results from numerical simulations, and is also demonstrated using measurement data with probe-positioning error. The proposed method can reduce the probe-positioning error and improve the far-field estimation accuracy by more over than 10 dB.
Kento WATANABE Shintaro IZUMI Yuji YANO Hiroshi KAWAGUCHI Masahiko YOSHIMOTO
This study presents a method for improving the heartbeat interval accuracy of photoplethysmographic (PPG) sensors at ultra-low sampling rates. Although sampling rate reduction can extend battery life, it increases the sampling error and degrades the accuracy of the extracted heartbeat interval. To overcome these drawbacks, a sampling-error compensation method is proposed in this study. The sampling error is reduced by using linear interpolation and autocorrelation based on the waveform similarity of heartbeats in PPG. Furthermore, this study introduces two-line approximation and first derivative PPG (FDPPG) to improve the waveform similarity at ultra-low sampling rates. The proposed method was evaluated using measured PPG and reference electrocardiogram (ECG) of seven subjects. The results reveal that the mean absolute error (MAE) of 4.11ms was achieved for the heartbeat intervals at a sampling rate of 10Hz, compared with 1-kHz ECG sampling. The heartbeat interval error was also evaluated based on a heart rate variability (HRV) analysis. Furthermore, the mean absolute percentage error (MAPE) of the low-frequency/high-frequency (LF/HF) components obtained from the 10-Hz PPG is shown to decrease from 38.3% to 3.3%. This error is small enough for practical HRV analysis.
Jian WU Xiaomei TANG Zengjun LIU Baiyu LI Feixue WANG
The major weakness of global navigation satellite system receivers is their vulnerability to intentional and unintentional interference. Frequency domain interference suppression (FDIS) technology is one of the most useful countermeasures. The pseudo-range measurement is unbiased after FDIS filtering given an ideal analog channel. However, with the influence of the analog modules used in RF front-end, the amplitude response and phase response of the channel equivalent filter are non-ideal, which bias the pseudo-range measurement after FDIS filtering and the bias varies along with the frequency of the interference. This paper proposes an unbiased interference suppression method based on signal estimation and spectrum compensation. The core idea is to use the parameters calculated from the tracking loop to estimate and reconstruct the desired signal. The estimated signal is filtered by the equivalent filter of actual channel, then it is used for compensating the spectrum loss caused by the FDIS method in the frequency domain. Simulations show that the proposed algorithm can reduce the pseudo-range measurement bias significantly, even for channels with asymmetrical group delay and multiple interference sources at any location.
Chihiro GO Yuma KINOSHITA Sayaka SHIOTA Hitoshi KIYA
This paper proposes a novel multi-exposure image fusion (MEF) scheme for single-shot high dynamic range imaging with spatially varying exposures (SVE). Single-shot imaging with SVE enables us not only to produce images without color saturation regions from a single-shot image, but also to avoid ghost artifacts in the producing ones. However, the number of exposures is generally limited to two, and moreover it is difficult to decide the optimum exposure values before the photographing. In the proposed scheme, a scene segmentation method is applied to input multi-exposure images, and then the luminance of the input images is adjusted according to both of the number of scenes and the relationship between exposure values and pixel values. The proposed method with the luminance adjustment allows us to improve the above two issues. In this paper, we focus on dual-ISO imaging as one of single-shot imaging. In an experiment, the proposed scheme is demonstrated to be effective for single-shot high dynamic range imaging with SVE, compared with conventional MEF schemes with exposure compensation.