The search functionality is under construction.

Keyword Search Result

[Keyword] computer-aided design(9hit)

1-9hit
  • A TM010 Cavity Power-Combiner with Microstrip Line Inputs

    Vinay RAVINDRA  Hirobumi SAITO  Jiro HIROKAWA  Miao ZHANG  Atsushi TOMIKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E100-C No:12
      Page(s):
    1087-1096

    A TM010 cavity power combiner is presented, which achieves direct interface to microstrip lines via magnetic field coupling. A prototype is fabricated and its S-matrix measured. From the S-parameters we calculate that it shows less than 0.85 dB insertion loss over 250 MHz bandwidth at X-band. The return power to the input ports is less than -15 dB over this bandwidth. We verify the insertion loss estimation using S-matrix, by measuring transmission S-parameter of a concatenated 2-port divider-combiner network. Similarly analyzed is the case of performance of power combiner when one of the input fails. We find that we can achieve graceful degradation provided we ensure some particular reflection phase at the degraded port.

  • Exploiting Sparse Activation for Low-Power Design of Synchronous Neuromorphic Systems

    Jaeyong CHUNG  Woochul KANG  

     
    BRIEF PAPER-Integrated Electronics

      Vol:
    E100-C No:11
      Page(s):
    1073-1076

    Massive amounts of computation involved in real-time evaluation of deep neural networks pose a serious challenge in battery-powered systems, and neuromorphic systems specialized in neural networks have been developed. This paper first shows the portion of active neurons at a time dwindles as going toward the output layer in recent large-scale deep convolutional neural networks. Spike-based, asynchronous neuromorphic systems take advantage of the sparse activation and reduce dynamic power consumption, while synchronous systems may waste much dynamic power even for the sparse activation due to clocks. We thus propose a clock gating-based dynamic power reduction method that exploits the sparse activation for synchronous neuromorphic systems. We apply the proposed method to a building block of a recently proposed synchronous neuromorphic computing system and demonstrate up to 79% dynamic power saving at a negligible overhead.

  • EDISON Science Gateway: A Cyber-Environment for Domain-Neutral Scientific Computing

    Hoon RYU  Jung-Lok YU  Duseok JIN  Jun-Hyung LEE  Dukyun NAM  Jongsuk LEE  Kumwon CHO  Hee-Jung BYUN  Okhwan BYEON  

     
    PAPER-Scientific Application

      Vol:
    E97-D No:8
      Page(s):
    1953-1964

    We discuss a new high performance computing service (HPCS) platform that has been developed to provide domain-neutral computing service under the governmental support from “EDucation-research Integration through Simulation On the Net” (EDISON) project. With a first focus on technical features, we not only present in-depth explanations of the implementation details, but also describe the strengths of the EDISON platform against the successful nanoHUB.org gateway. To validate the performance and utility of the platform, we provide benchmarking results for the resource virtualization framework, and prove the stability and promptness of the EDISON platform in processing simulation requests by analyzing several statistical datasets obtained from a three-month trial service in the initiative area of computational nanoelectronics. We firmly believe that this work provides a good opportunity for understanding the science gateway project ongoing for the first time in Republic of Korea, and that the technical details presented here can be served as an useful guideline for any potential designs of HPCS platforms.

  • Plasmonic Terahertz Wave Detectors Based on Silicon Field-Effect Transistors

    Min Woo RYU  Sung-Ho KIM  Hee Cheol HWANG  Kibog PARK  Kyung Rok KIM  

     
    PAPER

      Vol:
    E96-C No:5
      Page(s):
    649-654

    In this paper, we present the validity and potential capacity of a modeling and simulation environment for the nonresonant plasmonic terahertz (THz) detector based on the silicon (Si) field-effect transistor (FET) with a technology computer-aided design (TCAD) platform. The nonresonant and “overdamped” plasma-wave behaviors have been modeled by introducing a quasi-plasma electron charge box as a two-dimensional electron gas (2DEG) in the channel region only around the source side of Si FETs. Based on the coupled nonresonant plasma-wave physics and continuity equation on the TCAD platform, the alternate-current (AC) signal as an incoming THz wave radiation successfully induced a direct-current (DC) drain-to-source output voltage as a detection signal in a sub-THz frequency regime under the asymmetric boundary conditions with a external capacitance between the gate and drain. The average propagation length and density of a quasi-plasma have been confirmed as around 100 nm and 11019/cm3, respectively, through the transient simulation of Si FETs with the modulated 2DEG at 0.7 THz. We investigated the incoming radiation frequency dependencies on the characteristics of the plasmonic THz detector operating in sub-THz nonresonant regime by using the quasi-plasma modeling on TCAD platform. The simulated dependences of the photoresponse with quasi-plasma 2DEG modeling on the structural parameters such as gate length and dielectric thickness confirmed the operation principle of the nonresonant plasmonic THz detector in the Si FET structure. The proposed methodologies provide the physical design platform for developing novel plasmonic THz detectors operating in the nonresonant detection mode.

  • Automated Passive-Transmission-Line Routing Tool for Single-Flux-Quantum Circuits Based on A* Algorithm

    Masamitsu TANAKA  Koji OBATA  Yuki ITO  Shota TAKESHIMA  Motoki SATO  Kazuyoshi TAKAGI  Naofumi TAKAGI  Hiroyuki AKAIKE  Akira FUJIMAKI  

     
    PAPER-Digital Applications

      Vol:
    E93-C No:4
      Page(s):
    435-439

    We demonstrated an automated passive-transmission-line routing tool for single-flux-quantum (SFQ) circuits. The tool is based on the A* algorithm, which is widely used in CMOS LSI design, and tuned for microstrip/strip lines formed in the SRL 4-Nb layer structure. In large-scale SFQ circuits with 10000-20000 Josephson junctions, such as microprocessors, 80-90% of the wires can be automatically routed in about ten minutes. We verified correct operation above 40 GHz for an automatically routed 44 switch circuit from on-chip high-speed tests. The resulting circuit size and operating frequency were comparable to those of a manually designed result. We believe that the tool is useful for large-scale SFQ circuit design using conventional fabrication processes.

  • Steiner Trees on Sets of Three Points in -Geometry ( =3m)

    Michiyoshi HAYASE  

     
    PAPER-Graphs and Networks

      Vol:
    E85-A No:8
      Page(s):
    1946-1955

    We show a method to determine a Steiner Minimum Tree (SMT) and a necessary and sufficient condition that an SMT is a full Steiner tree for three given points in -geometry ( = 3m, m is a positive integer). The -geometry allows only orientations with angles i/ (i and ( 2) are integers), and fill up the gap between the rectilinear geometry ( = 2) and the Euclidean geometry ( = ). An SMT in -geometry ( = 3m) has a similar property to that in the Euclidean geometry. The method to determine an SMT in -geometry is an extension of the well-known method in the Euclidean geometry. The Steiner point in -geometry is any point in the intersection area with a parallelogram and a Steiner locus. Then there are infinite candidate locations of the Steiner point. The Steiner point in the Euclidean geometry is that in -geometry ( = 3m).

  • Rigorous Design of Iris-Coupled Waveguide Filters by Field-Theory-Based Approach and Genetic Algorithms

    Fengchao XIAO  Hatsuo YABE  

     
    PAPER-Passive Element

      Vol:
    E81-C No:6
      Page(s):
    934-940

    The increasing activity at millimeter wave frequency band and the growing demand for waveguide components to be applied for integrated circuit purpose have promoted the need for applying the field-theory-based approaches to the design procedure. In this paper, genetic algorithms (GA's) are applied to accurately design the iris-coupled waveguide filters based on network-boundary element method (NBEM). GA's model the natural selection and evolve towards the global optimum, thus avoid being trapped in local minima. Network-boundary element method, which combines boundary element method with network analysis method, derives the network parameters of the guided wave structures with less storage location and central processing unit time. Therefore, NBEM is a feasible and efficient field-theory-based approach for the GA optimization of waveguide filters. With NBEM performing the task of evaluating the performance of the filter designs optimized by the GA, rigorous and optimal designs of the waveguide filters are realized. The obtained analysis and optimization results are compared to a number of reference solutions to demonstrate the validity and accuracy of the proposed approach.

  • A Method for C2 Piecewise Quartic Polynomial Interpolation

    Caiming ZHANG  Takeshi AGUI  Hiroshi NAGAHASHI  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E79-D No:5
      Page(s):
    584-590

    A new global method for constructing a C2 piecewise quartic polynomial curve is presented. The coefficient matrix of equations which must be solved to construct the curve is tridiagonal. The joining points of adjacent curve segments are the given data points. The constructed curve reproduces exactly a polynomial of degree four or less. The results of experiments to test the efficiency of the new method are also shown.

  • Symbolic Scheduling Techniques

    Ivan P. RADIVOJEVI  Forrest BREWER  

     
    PAPER-High-Level Synthesis

      Vol:
    E78-D No:3
      Page(s):
    224-230

    This paper describes an exact symbolic formulation of resource-constrained scheduling which allows speculative operation execution in arbitrary forward-branching control/data paths. The technique provides a closed-form solution set in which all satisfying schedules are encapsulated in a compressed OBDD-based representation. An iterative construction method is presented along with benchmark results. The experiments demonstrate the ability of the proposed technique to efficiently extract parallelism not explicitly specified in the input description.