The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] delay faults(4hit)

1-4hit
  • Delay Defect Diagnosis Methodology Using Path Delay Measurements

    Eun Jung JANG  Jaeyong CHUNG  Jacob A. ABRAHAM  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Vol:
    E98-C No:10
      Page(s):
    991-994

    With aggressive device scaling, timing failures have become more prevalent due to manufacturing defects and process variations. When timing failure occurs, it is important to take corrective actions immediately. Therefore, an efficient and fast diagnosis method is essential. In this paper, we propose a new diagnostic method using timing information. Our method approximately estimates all the segment delays of measured paths in a design, using inequality-constrained least squares methods. Then, the proposed method ranks the possible locations of delay defects based on the difference between estimated segment delays and the expected values of segment delays. The method works well for multiple delay defects as well as single delay defects. Experiment results show that our method yields good diagnostic resolution. With the proposed method, the average first hit rank (FHR), was within 7 for single delay defect and within 8 for multiple delay defects.

  • Improving Test Coverage by Measuring Path Delay Time Including Transmission Time of FF

    Wenpo ZHANG  Kazuteru NAMBA  Hideo ITO  

     
    LETTER-Dependable Computing

      Vol:
    E96-D No:5
      Page(s):
    1219-1222

    As technology scales to 45 nm and below, the reliability of VLSI declines due to small delay defects, which are hard to detect by functional clock frequency. To detect small delay defects, a method which measures the delay time of path in circuit under test (CUT) was proposed. However, because a large number of FFs exist in recent VLSI, the probability that the resistive defect occurs in the FFs is increased. A test method measuring path delay time including the transmission time of FFs is necessary. However, the path measured by the conventional on-chip path delay time measurement method does not include a part of a master latch. Thus, testing using the conventional measurement method cannot detect defects occurring on the part. This paper proposes an improved on-chip path delay time measurement method. Test coverage is improved by measuring the path delay time including transmission time of a master latch. The proposed method uses a duty-cycle-modified clock signal. Evaluation results show that, the proposed method improves test coverage 5.2511.28% with the same area overhead as the conventional method.

  • Analysis of Test Generation Complexity for Stuck-At and Path Delay Faults Based on τk-Notation

    Chia Yee OOI  Thomas CLOUQUEUR  Hideo FUJIWARA  

     
    PAPER-Complexity Theory

      Vol:
    E90-D No:8
      Page(s):
    1202-1212

    In this paper, we discuss the relationship between the test generation complexity for path delay faults (PDFs) and that for stuck-at faults (SAFs) in combinational and sequential circuits using the recently introduced τk-notation. On the other hand, we also introduce a class of cyclic sequential circuits that are easily testable, namely two-column distributive state-shiftable finite state machine realizations (2CD-SSFSM). Then, we discuss the relevant conjectures and unsolved problems related to the test generation for sequential circuits with PDFs under different clock schemes and test generation models.

  • An Alternative Test Generation for Path Delay Faults by Using Ni-Detection Test Sets

    Hiroshi TAKAHASHI  Kewal K. SALUJA  Yuzo TAKAMATSU  

     
    PAPER-Test

      Vol:
    E86-D No:12
      Page(s):
    2650-2658

    In this paper, we propose an alternative method that does not generate a test for each path delay fault directly to generate tests for path delay faults. The proposed method generates an N-propagation test-pair set by using an Ni-detection test set for single stuck-at faults. The N-propagation test-pair set is a set of vector pairs which contains N distinct vector pairs for every transition faults at a check point. Check points consist of primary inputs and fanout branches in a circuit. We do not target the path delay faults for test generation, instead, the N-propagation test-pair set is generated for the transition (both rising and falling) faults of check points in the circuit. After generating tests, tests are simulated to determine their effectiveness for singly testable path delay faults and robust path delay faults. Results of experiments on the ISCAS'85 benchmark circuits show that the N-propagation test-pair sets obtained by our method are effective in testing path delay faults.