The search functionality is under construction.

Keyword Search Result

[Keyword] division(562hit)

201-220hit(562hit)

  • Exact Error Rate Analysis for Pulsed DS- and Hybrid DS/TH-CDMA in Nakagami Fading

    Mohammad Azizur RAHMAN  Shigenobu SASAKI  Hisakazu KIKUCHI  Hiroshi HARADA  Shuzo KATO  

     
    PAPER

      Vol:
    E91-A No:11
      Page(s):
    3150-3162

    Exact bit error probabilities (BEP) are derived in closed-form for binary pulsed direct sequence (DS-) and hybrid direct sequence time hopping code division multiple access (DS/TH-CDMA) systems that have potential applications in ultra-wideband (UWB) communications. Flat Nakagami fading channel is considered and the characteristic function (CF) method is adopted. An exact expression of the CF is obtained through a straightforward method, which is simple and good for any arbitrary pulse shape. The CF is then used to obtain the exact BEP that requires less computational complexity than the method based on improved Gaussian approximation (IGA). It is shown under identical operating conditions that the shape of the CF, as well as, the BEP differs considerably for the two systems. While both the systems perform comparably in heavily faded channel, the hybrid system shows better BEP performance in lightly-faded channel. The CF and BEP also strongly depend on chip length and chip-duty that constitute the processing gain (PG). Different combinations of the parameters may result into the same PG and the BEP of a particular system for a constant PG, though remains nearly constant in a highly faded channel, may vary substantially in lightly-faded channel. A comparison of the results from the exact method with those from the standard Gaussian approximation (SGA) reveals that the SGA, though accurate for both the systems in highly-faded channel, becomes extremely optimistic for low-duty systems in lightly-faded channel. The SGA also fails to track several other system trade-offs.

  • An OFDM-Based Speech Encryption System without Residual Intelligibility

    Der-Chang TSENG  Jung-Hui CHIU  

     
    LETTER-Speech and Hearing

      Vol:
    E91-D No:11
      Page(s):
    2742-2745

    Since an FFT-based speech encryption system retains a considerable residual intelligibility, such as talk spurts and the original intonation in the encrypted speech, this makes it easy for eavesdroppers to deduce the information contents from the encrypted speech. In this letter, we propose a new technique based on the combination of an orthogonal frequency division multiplexing (OFDM) scheme and an appropriate QAM mapping method to remove the residual intelligibility from the encrypted speech by permuting several frequency components. In addition, the proposed OFDM-based speech encryption system needs only two FFT operations instead of the four required by the FFT-based speech encryption system. Simulation results are presented to show the effectiveness of this proposed technique.

  • On the Estimation of Carrier Frequency Offset and DC Offset for OFDM Systems

    Hai LIN  Takeshi NAKAO  Weiming LU  Katsumi YAMASHITA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:10
      Page(s):
    3288-3296

    In an orthogonal frequency division multiplexing (OFDM) receiver with direct-conversion architecture, carrier frequency offset (CFO) and direct-current offset (DCO), which cause severe performance degradation, need to be estimated and compensated. Recently, by investigating the subspace of OFDM signal after coarse DCO cancellation using time-domain average, we have proposed a nullspace-based estimator (NSE), for blind CFO and DCO estimation. In this paper, based on an analysis of the cost function of the NSE, we propose a common nullspace based estimator (CNSE). It is shown that by matching the frequency occupation of the received OFDM signal with CFO and DCO, the CNSE can achieve the full performance potential of the NSE. Also, the performance analysis reveals that the CNSE can asymptotically approach the Cramer-Rao bound (CRB) of OFDM CFO estimation in the presence of DCO. Finally the analysis results are confirmed by simulations.

  • Joint Channel Estimation and Phase Noise Suppression for OFDM Systems

    Yong-Hwa KIM  Seong-Cheol KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:10
      Page(s):
    3371-3374

    Phase noise (PHN) can cause the common phase error (CPE) and the inter-carrier interference (ICI), both of which impair the accurate channel estimation in orthogonal frequency division multiplexing (OFDM) systems. In this letter, we build a new signal model parameterized by the channel impulse response, the CPE and the ICI. Based on this model, we derive the maximum likelihood estimator (MLE) and the minimum mean square error estimator (MMSEE). Simulation results show that the proposed schemes significantly improve the performance of OFDM systems in the presence of PHN.

  • Fractional Subblocking for Partial Transmit Sequence OFDM

    Abolfazl GHASSEMI  T. Aaron GULLIVER  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E91-B No:10
      Page(s):
    3166-3173

    Partial transmit sequence (PTS) is a well known technique used to reduce the peak-to-average power ratio (PAPR) of an orthogonal frequency division multiplexing (OFDM) signal. However, it has relatively high complexity due to the computation of multiple inverse fast Fourier transforms (IFFTs). To reduce this complexity, we use intermediate signals within a decimation in frequency (DIF) radix IFFT and propose a new PTS subblocking technique which requires the computation of only partial IFFTs. Performance results are presented which show a PAPR reduction similar to that with other techniques such as original PTS (O-PTS). Further, we show that complexity reduction can be achieved with either low or high radix IFFT algorithms.

  • Robust MOE Detector for DS-CDMA Systems with Signature Waveform Mismatch

    Tsui-Tsai LIN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:10
      Page(s):
    3375-3378

    In this letter, a decision-directed MOE detector with excellent robustness against signature waveform mismatch is proposed for DS-CDMA systems. Both the theoretic analysis and computer simulation results demonstrate that the proposed detector can provide better SINR performance than that of conventional detectors.

  • (d+1,2)-Track Layout of Bipartite Graph Subdivisions

    Miki MIYAUCHI  

     
    PAPER

      Vol:
    E91-A No:9
      Page(s):
    2292-2295

    A (k,2)-track layout of a graph G consists of a 2-track assignment of G and an edge k-coloring of G with no monochromatic X-crossing. This paper studies the problem of (k,2)-track layout of bipartite graph subdivisions. Recently V. Dujmovi and D.R. Wood showed that for every integer d ≥ 2, every graph G with n vertices has a (d+1,2)-track layout of a subdivision of G with 4 log d qn(G) +3 division vertices per edge, where qn(G) is the queue number of G. This paper improves their result for the case of bipartite graphs, and shows that for every integer d ≥ 2, every bipartite graph Gm,n has a (d+1,2)-track layout of a subdivision of Gm,n with 2 log d n -1 division vertices per edge, where m and n are numbers of vertices of the partite sets of Gm,n with m ≥ n.

  • Multiple Access Interference Reduction Using Received Response Code Sequence for DS-CDMA UWB System

    Keat Beng TOH  Shin'ichi TACHIKAWA  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E91-A No:9
      Page(s):
    2646-2654

    This paper proposes a combination of novel Received Response (RR) sequence at the transmitter and a Matched Filter-RAKE (MF-RAKE) combining scheme receiver system for the Direct Sequence-Code Division Multiple Access Ultra Wideband (DS-CDMA UWB) multipath channel model. This paper also demonstrates the effectiveness of the RR sequence in Multiple Access Interference (MAI) reduction for the DS-CDMA UWB system. It suggests that by using conventional binary code sequence such as the M sequence or the Gold sequence, there is a possibility of generating extra MAI in the UWB system. Therefore, it is quite difficult to collect the energy efficiently although the RAKE reception method is applied at the receiver. The main purpose of the proposed system is to overcome the performance degradation for UWB transmission due to the occurrence of MAI during multiple accessing in the DS-CDMA UWB system. The proposed system improves the system performance by improving the RAKE reception performance using the RR sequence which can reduce the MAI effect significantly. Simulation results verify that significant improvement can be obtained by the proposed system in the UWB multipath channel models.

  • Autonomous Community Construction Technology to Achieve Service Assurance in ADCS

    Khalid MAHMOOD  Xiaodong LU  Kinji MORI  

     
    PAPER

      Vol:
    E91-D No:9
      Page(s):
    2259-2266

    Autonomous Decentralized Community System (ADCS) makes its basis on offering customized and dynamic services to group of end-users having common preferences at specified time and location. Owing to extreme dynamism in the system caused by rapidly varying user's demands, and severe mobility of users, it is quite difficult to assure timely service provision to all community members. This paper presents autonomous decentralized community system construction by autonomous division and integration technologies to procure service assurance under dynamic situations, without involving significant communication overhead. By adopting the concept of size threshold, the proposed technique continuously maintains the appropriate size of community in constantly and rapidly changing operating environment, to deliver optimal quality of service in terms of response time. The effectiveness of proposed technology has been shown through simulation, which reveals remarkable improvement (up to 29%) in response time.

  • A Novel Design of Reconfigurable Wavelength-Time Optical Codes to Enhance Security in Optical CDMA Networks

    NASARUDDIN  Tetsuo TSUJIOKA  

     
    PAPER

      Vol:
    E91-B No:8
      Page(s):
    2516-2524

    An optical CDMA (OCDMA) system is a flexible technology for future broadband multiple access networks. A secure OCDMA network in broadband optical access technologies is also becoming an issue of great importance. In this paper, we propose novel reconfigurable wavelength-time (W-T) optical codes that lead to secure transmission in OCDMA networks. The proposed W-T optical codes are constructed by using quasigroups (QGs) for wavelength hopping and one-dimensional optical orthogonal codes (OOCs) for time spreading; we call them QGs/OOCs. Both QGs and OOCs are randomly generated by a computer search to ensure that an eavesdropper could not improve its interception performance by making use of the coding structure. Then, the proposed reconfigurable QGs/OOCs can provide more codewords, and many different code set patterns, which differ in both wavelength and time positions for given code parameters. Moreover, the bit error probability of the proposed codes is analyzed numerically. To realize the proposed codes, a secure system is proposed by employing reconfigurable encoders/decoders based on array waveguide gratings (AWGs), which allow the users to change their codeword patterns to protect against eavesdropping. Finally, the probability of breaking a certain codeword in the proposed system is evaluated analytically. The results show that the proposed codes and system can provide a large codeword pattern, and decrease the probability of breaking a certain codeword, to enhance OCDMA network security.

  • Design and Performance Analysis of Multimedia Pre-Allocation WDMA MAC Protocol for Metro-WDMA Networks

    Changho YUN  Kiseon KIM  

     
    PAPER-Network

      Vol:
    E91-B No:8
      Page(s):
    2545-2558

    This paper proposes the Multimedia Pre-allocation WDMA (MP-WDMA) media access control (MAC) protocol to provide an efficient packet transfer service for metro-wavelength division multiple access (WDMA) networks. MP-WDMA considers three traffic types: constant bit rate (CBR), variable bit rate 1 (VBR1), and VBR2 traffic for a multimedia service as categorized in Multimedia WDMA (M-WDMA) MAC protocol. MP-WDMA is based on pre-allocation WDMA (P-WDMA), but the three traffic types are simultaneously allocated at one time slot, and one of them is selected through low bandwidth control signaling. Namely, a station assigns appropriate priority to input traffic, based on proposed traffic priority rules in MP-WDMA in order to determine the type of traffic. Accordingly, MP-WDMA can reduce station complexity as well as the possibility of idle time slot occurrences, compared with M-WDMA. Additionally, we analytically investigate the channel utilization and channel access delay of MP-WDMA and compare them with those of M-WDMA to find a proper MAC protocol for the networks. As a result, MP-WDMA supports maximally 30% higher channel utilization than M-WDMA regardless of channel and traffic conditions. Furthermore, MP-WDMA reduces the channel access delay of the delay-sensitive VBR2 traffic at the cost of increasing the channel access delay of the delay-insensitive VBR1 traffic. In this regard, MP-WDMA is suitable for the networks in terms of station complexity, channel utilization, and the channel access delay for VBR2 traffic.

  • Analysis of Phase Shift Tolerance in a Coherent OCDM System Using FBG Phase En/Decoders

    Renichi MORITOMO  Tomoaki NAKAMURA  Yasuhiro KOTANI  Saeko OSHIBA  

     
    PAPER

      Vol:
    E91-B No:8
      Page(s):
    2509-2515

    We previously reported, for a coherent optical code division multiplexing (OCDM) system using fiber Bragg grating (FBG) phase en/decoders, that the signals exhibited phase shift tolerance for a difference between the light source wavelength and the Bragg wavelength of an FBG phase en/decoder when the two signals were multiplexed. However, the phase conditions of only the central wavelength among the ones forming a pulse were analyzed. For a more specific consideration, we calculated the phase of each wavelength forming the decoded pulse. In this report, the measured and calculated reflecting properties were compared and the reliability of the method was confirmed. We calculated the phase conditions of the decoded pulses and clarified the phase characteristics with regard to the phase modulation and the interference between pulses overlapped during decoding. For the realization of an asynchronous access, the FBG phase en/decoders should be designed so that the spreading time is the inverse of 2(texttransmission rate).

  • Novel SLM Scheme with Low-Complexity for PAPR Reduction in OFDM System

    Chua-Yun HSU  Hsin-Chieh CHAO  

     
    PAPER-Digital Signal Processing

      Vol:
    E91-A No:7
      Page(s):
    1689-1696

    Orthogonal frequency-division multiplexing (OFDM) is an attractive transmission technique for high-bit-rate communication systems. One major drawback of OFDM is the high peak-to-average power ratio (PAPR) of the transmitted signal. This study introduces a low-complexity selected mapping (SLM) OFDM scheme based on discrete Fourier transform (DFT) constellation-shaping. The DFT-based constellation-shaping algorithm applied with conventional SLM scheme usually requires a bank of DFT-shaping matrices to generate low-correlation constellation sequences and a bank of inverse fast Fourier transforms (IFFTs) to generate a set of candidate transmission signals, and this process usually results in high computational complexity. Therefore, a sparse matrix algorithm with low-complexity is proposed to replace the IFFT blocks and the DFT-shaping blocks in the proposed DFT constellation-shaping SLM scheme. By using the proposed sparse matrix, the candidate transmission signal with the lowest PAPR can be achieved with lower complexity than that of the conventional SLM scheme. The complexity analysis of the proposed algorithm shows great an improvement in the reduction of the number of multiplications. Moreover, this new low-complexity technique offers a PAPR that is significantly lower than that of the conventional SLM without any loss in terms of energy and spectral efficiency.

  • On Performance of Clustering-Based Limited Feedback Beamforming in Multiple-Antenna OFDM Systems

    Erlin ZENG  Shihua ZHU  Xuewen LIAO  Zhimeng ZHONG  Zhenjie FENG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E91-A No:7
      Page(s):
    1850-1853

    Prior studies on limited feedback (LFB) beamforming in multiple-antenna orthogonal frequency division multiplexing (OFDM) have resorted to Monte-Carlo simulations to evaluate the system performance. This letter proposes a novel analytical framework, based on which the averaged signal-to-noise ratio and the ergodic capacity performance of clustering-based LFB beamforming in multiple-antenna OFDM systems are studied. Simulations are also provided to verify the analysis.

  • Bidirectional Gigabit Millimeter-Wave Wavelength Division Multiplexed-Radio over Fiber Link Using a Reflective Semiconductor Optical Amplifier

    Dae-Won LEE  Yong-Yuk WON  Sang-Kook HAN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:7
      Page(s):
    2418-2421

    We propose a new bidirectional gigabit mm-wave wavelength division multiplexed-radio over fiber link which shares the same wavelength. As the downlink, the central station transmits a 30 GHz single sideband wireless signal which is modulated 1.25 Gbps and also transmits a remote 32 GHz local oscillator for down-conversion of a uplink wireless signal by using a mach-zehnder modulator and a fiber bragg grating. As the uplink, the base station transmits a down-converted 1.25 Gbps wireless signal by using a reflective semiconductor optical amplifier. We achieve a BER < 10-9 in the downlink at -14.05 dBm and uplink at -12.5 dBm after 20 km transmission.

  • Performance Comparison of Detection Methods for Combined STBC and SM Systems

    Xuan Nam TRAN  Huan Cong HO  Tadashi FUJINO  Yoshio KARASAWA  

     
    PAPER-Smart Antennas & MIMO

      Vol:
    E91-B No:6
      Page(s):
    1734-1742

    This paper considers detection schemes for the combined space-time block coding and spatial multiplexing (STBC-SM) transmission systems. We propose a symbol detection scheme which allows to extend the limit on the number of transmit antennas imposed by the previous group detection scheme. The proposed scheme allows to double multiplexing gain as well as provides better bit error rate (BER) performance over the group detection scheme. It is shown that the proposed QR-SIC (combined QR-decomposition and successive interference cancellation) symbol detector provides good trade-off between the BER and computational complexity performance and, thus, is the most suitable detector for the combined STBC-SM system.

  • Performance of MIMO E-SDM Systems Using Channel Prediction in Actual Time-Varying Indoor Fading Environments

    Huu Phu BUI  Hiroshi NISHIMOTO  Toshihiko NISHIMURA  Takeo OHGANE  Yasutaka OGAWA  

     
    PAPER-Smart Antennas & MIMO

      Vol:
    E91-B No:6
      Page(s):
    1713-1723

    In time-varying fading environments, the performance of multiple-input multiple-output (MIMO) systems applying an eigenbeam-space division multiplexing (E-SDM) technique may be degraded due to a channel change during the time interval between the transmit weight matrix determination and the actual data transmission. To compensate for the channel change, we have proposed some channel prediction methods. Simulation results based on computer-generated channel data showed that better performance can be obtained when using the prediction methods in Rayleigh fading environments assuming the Jakes model with rich scatterers. However, actual MIMO systems may be used in line-of-sight (LOS) environments, and even in a non-LOS case, scatterers may not be uniformly distributed around a receiver and/or a transmitter. In addition, mutual coupling between antennas at both the transmitter and the receiver cannot be ignored as it affects the system performance in actual implementation. We conducted MIMO channel measurement campaigns at a 5.2 GHz frequency band to evaluate the channel prediction techniques. In this paper, we present the experiment and simulation results using the measured channel data. The results show that robust bit-error rate performance is obtained when using the channel prediction methods and that the methods can be used in both Rayleigh and Rician fading environments, and do not need to know the maximum Doppler frequency.

  • Particle Swarm with Soft Decision for Multiuser Detection of Synchronous Multicarrier CDMA

    Muhammad ZUBAIR  Muhammad A.S. CHOUDHRY  Aqdas NAVEED  Ijaz Mansoor QURESHI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:5
      Page(s):
    1640-1643

    The computation involved in multiuser detection (MUD) for multicarrier CDMA (MC-CDMA) based on maximum likelihood (ML) principle grows exponentially with the number of users. Particle swarm optimization (PSO) with soft decisions has been proposed to mitigate this problem. The computational complexity of PSO, is comparable with genetic algorithm (GA), but is much less than the optimal ML detector and yet its performance is much better than GA.

  • Multiuser Detection for Asynchronous Multicarrier CDMA Using Particle Swarm Optimization

    Muhammad ZUBAIR  Muhammad A.S. CHOUDHRY  Aqdas NAVEED  Ijaz Mansoor QURESHI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:5
      Page(s):
    1636-1639

    Due to the computational complexity of the optimum maximum likelihood detector (OMD) growing exponentially with the number of users, suboptimum techniques have received significant attention. We have proposed the particle swarm optimization (PSO) for the multiuser detection (MUD) in asynchronous multicarrier code division multiple access (MC-CDMA) system. The performance of PSO based MUD is near optimum, while its computational complexity is far less than OMD. Performance of PSO-MUD has also been shown to be better than that of genetic algorithm based MUD (GA-MUD) at practical SNR.

  • A High-Speed Two-Parallel Radix-24 FFT/IFFT Processor for MB-OFDM UWB Systems

    Jeesung LEE  Hanho LEE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E91-A No:4
      Page(s):
    1206-1211

    This paper presents a novel high-speed, low-complexity two-parallel 128-point radix-24 FFT/IFFT processor for MB-OFDM ultrawideband (UWB) systems. The proposed high-speed, low-complexity FFT architecture can provide a higher throughput rate and low hardware complexity by using a two-parallel data-path scheme and a single-path delay-feedback (SDF) structure. The radix-24 FFT algorithm is also realized in our processor to reduce the number of complex multiplications. The proposed FFT/IFFT processor has been designed and implemented with 0.18-µm CMOS technology in a supply voltage of 1.8 V. The proposed two-parallel FFT/IFFT processor has a throughput rate of up to 900 Msample/s at 450 MHz while requiring much smaller hardware complexity and low power consumption.

201-220hit(562hit)