The search functionality is under construction.

Keyword Search Result

[Keyword] division(562hit)

21-40hit(562hit)

  • An Efficient Secure Division Protocol Using Approximate Multi-Bit Product and New Constant-Round Building Blocks Open Access

    Keitaro HIWATASHI  Satsuya OHATA  Koji NUIDA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/09/28
      Vol:
    E105-A No:3
      Page(s):
    404-416

    Integer division is one of the most fundamental arithmetic operators and is ubiquitously used. However, the existing division protocols in secure multi-party computation (MPC) are inefficient and very complex, and this has been a barrier to applications of MPC such as secure machine learning. We already have some secure division protocols working in Z2n. However, these existing results have drawbacks that those protocols needed many communication rounds and needed to use bigger integers than in/output. In this paper, we improve a secure division protocol in two ways. First, we construct a new protocol using only the same size integers as in/output. Second, we build efficient constant-round building blocks used as subprotocols in the division protocol. With these two improvements, communication rounds of our division protocol are reduced to about 36% (87 rounds → 31 rounds) for 64-bit integers in comparison with the most efficient previous one.

  • A Sparsely-Connected OTFS-BFDM System Using Message-Passing Decoding Open Access

    Tingyao WU  Zhisong BIE  Celimuge WU  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2021/08/27
      Vol:
    E105-A No:3
      Page(s):
    576-583

    The newly proposed orthogonal time frequency space (OTFS) system exhibits excellent error performance on high-Doppler fading channels. However, the rectangular prototype window function (PWF) inherent in OTFS leads to high out-of-band emission (OOBE), which reduces the spectral efficiency in multi-user scenarios. To this end, this paper presents an OTFS system based on bi-orthogonal frequency division multiplexing (OTFS-BFDM) modulation. In OTFS-BFDM systems, PWFs with bi-orthogonal properties can be optimized to provide lower OOBE than OTFS, which is a special case with rectangular PWF. We further derive that the OTFS-BFDM system is sparsely-connected so that the low-complexity message passing (MP) decoding algorithm can be adopted. Moreover, the power spectral density, peak to average power ratio (PAPR) and bit error rate (BER) of the OTFS-BFDM system with different PWFs are compared. Simulation results show that: i) the use of BFDM modulation significantly inhibits the OOBE of OTFS system; ii) the better the frequency-domain localization of PWFs, the smaller the BER and PAPR of OTFS-BFDM system.

  • A Construction of Inter-Group Complementary Sequence Set Based on Interleaving Technique

    Xiaoyu CHEN  Huanchang LI  Yihan ZHANG  Yubo LI  

     
    LETTER-Coding Theory

      Pubricized:
    2021/07/12
      Vol:
    E105-A No:1
      Page(s):
    68-71

    A new construction of shift sequences is proposed under the condition of P|L, and then the inter-group complementary (IGC) sequence sets are constructed based on the shift sequence. By adjusting the parameter q, two or three IGC sequence sets can be obtained. Compared with previous methods, the proposed construction can provide more sequence sets for both synchronous and asynchronous code-division multiple access communication systems.

  • Neural Network Calculations at the Speed of Light Using Optical Vector-Matrix Multiplication and Optoelectronic Activation

    Naoki HATTORI  Jun SHIOMI  Yutaka MASUDA  Tohru ISHIHARA  Akihiko SHINYA  Masaya NOTOMI  

     
    PAPER

      Pubricized:
    2021/05/17
      Vol:
    E104-A No:11
      Page(s):
    1477-1487

    With the rapid progress of the integrated nanophotonics technology, the optical neural network architecture has been widely investigated. Since the optical neural network can complete the inference processing just by propagating the optical signal in the network, it is expected more than one order of magnitude faster than the electronics-only implementation of artificial neural networks (ANN). In this paper, we first propose an optical vector-matrix multiplication (VMM) circuit using wavelength division multiplexing, which enables inference processing at the speed of light with ultra-wideband. This paper next proposes optoelectronic circuit implementation for batch normalization and activation function, which significantly improves the accuracy of the inference processing without sacrificing the speed performance. Finally, using a virtual environment for machine learning and an optoelectronic circuit simulator, we demonstrate the ultra-fast and accurate operation of the optical-electronic ANN circuit.

  • Practical Integral Distinguishers on SNOW 3G and KCipher-2

    Jin HOKI  Kosei SAKAMOTO  Kazuhiko MINEMATSU  Takanori ISOBE  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/05/12
      Vol:
    E104-A No:11
      Page(s):
    1603-1611

    In this paper, we explore the security against integral attacks on well-known stream ciphers SNOW 3G and KCipher-2. SNOW 3G is the core of the 3GPP confidentiality and integrity algorithms UEA2 and UIA2, and KCipher-2 is a standard algorithm of ISO/IEC 18033-4 and CRYPTREC. Specifically, we investigate the propagation of the division property inside SNOW 3G and KCipher-2 by the Mixed-Integer Linear Programming to efficiently find an integral distinguisher. As a result, we present a 7-round integral distinguisher with 23 chosen IVs for KCipher-2. As far as we know, this is the first attack on a reduced variant of KCipher-2 by the third party. In addition, we present a 13-round integral distinguisher with 27 chosen IVs for SNOW 3G, whose time/data complexity is half of the previous best attack by Biryukov et al.

  • Optical CDMA Scheme Using Generalized Modified Prime Sequence Codes and Extended Bi-Orthogonal Codes Open Access

    Kyohei ONO  Shoichiro YAMASAKI  Shinichiro MIYAZAKI  Tomoko K. MATSUSHIMA  

     
    PAPER-Spread Spectrum Technologies and Applications

      Pubricized:
    2021/03/08
      Vol:
    E104-A No:9
      Page(s):
    1329-1338

    Optical code-division multiple-access (CDMA) techniques provide multi-user data transmission services in optical wireless and fiber communication systems. Several signature codes, such as modified prime sequence codes (MPSCs), generalized MPSCs (GMPSCs) and modified pseudo-orthogonal M-sequence sets, have been proposed for synchronous optical CDMA systems. In this paper, a new scheme is proposed for synchronous optical CDMA to increase the number of users and, consequently, to increase the total data rate without increasing the chip rate. The proposed scheme employs a GMPSC and an extended bi-orthogonal code which is a unipolar code generated from a bipolar Walsh code. Comprehensive comparisons between the proposed scheme and several conventional schemes are shown. Moreover, bit error rate performance and energy efficiency of the proposed scheme are evaluated comparing with those of the conventional optical CDMA schemes under atmospheric propagation environment.

  • Two New Families of Asymptotically Optimal Codebooks from Characters of Cyclic Groups

    Yang YAN  Yao YAO  Zhi CHEN  Qiuyan WANG  

     
    PAPER-Information Theory

      Pubricized:
    2021/02/08
      Vol:
    E104-A No:8
      Page(s):
    1027-1032

    Codebooks with small inner-product correlation have applied in direct spread code division multiple access communications, space-time codes and compressed sensing. In general, it is difficult to construct optimal codebooks achieving the Welch bound or the Levenstein bound. This paper focuses on constructing asymptotically optimal codebooks with characters of cyclic groups. Based on the proposed constructions, two classes of asymptotically optimal codebooks with respect to the Welch bound are presented. In addition, parameters of these codebooks are new.

  • Comprehensive Feasibility Study on Direct Spectrum Division Transmission over Multiple Satellite Transponders

    Fumihiro YAMASHITA  Daisuke GOTO  Yasuyoshi KOJIMA  Jun-ichi ABE  Takeshi ONIZAWA  

     
    PAPER-Satellite Communications

      Pubricized:
    2020/10/22
      Vol:
    E104-B No:4
      Page(s):
    446-454

    We have developed a direct spectrum division transmission (DSDT) technique that can divide a single-carrier signal into multiple sub-spectra and assign them to dispersed frequency resources of the satellite transponder to improve the spectrum efficiency of the whole system. This paper summarizes the satellite experiments on DSDT over a single and/or multiple satellite transponders, while changing various parameters such as modulation schemes, roll-off ratios, and symbol rates. In addition, by considering practical use conditions, we present an evaluation of the performance when the spectral density of each sub-spectrum differed across transponders. The satellite experiments demonstrate that applying the proposal does not degrade the bit error rate (BER) performance. Thus, the DSDT technique is a practical approach to use the scattered unused frequency resources over not only a single transponder but also multiple ones.

  • A PAPR Reduction Technique for OFDM Systems Using Phase-Changed Peak Windowing Method

    Xiaoran CHEN  Xin QIU  Xurong CHAI  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2020/09/04
      Vol:
    E104-A No:3
      Page(s):
    627-631

    Orthogonal frequency division multiplexing (OFDM) technique has been widely used in communication systems in pursuit of the most efficient utilization of spectrum. However, the increase of the number of orthogonal subcarriers will lead to the rise of the peak-to-average power ratio (PAPR) of the waveform, thus reducing the efficiency of the power amplifiers. In this letter we propose a phase-changed PAPR reduction technique based on windowing function architecture for OFDM systems. This technique is based on the idea of phase change, which makes the spectrum of output signal almost free of regrowth caused by peak clipping. It can reduce more than 28dBc adjacent channel power ratio (ACPR) compared with the traditional peak windowing clipping methods in situation that peak is maximally suppressed. This technique also has low algorithm complexity so it can be easily laid out on hardware. The proposed algorithm has been laid out on a low-cost field-programmable gate array (FPGA) to verify its effectiveness and feasibility. A 64-QAM modulated 20M LTE-A waveform is used for measurement, which has a sampling rate of 245.67M.

  • Randomization Approaches for Reducing PAPR with Partial Transmit Sequence and Semidefinite Relaxation Open Access

    Hirofumi TSUDA  Ken UMENO  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2020/09/01
      Vol:
    E104-B No:3
      Page(s):
    262-276

    To reduce peak-to-average power ratio, we propose a method of choosing suitable vectors in a partial transmit sequence technique. Conventional approaches require that a suitable vector be selected from a large number of candidates. By contrast, our method does not include such a selecting procedure, and instead generates random vectors from the Gaussian distribution whose covariance matrix is a solution of a relaxed problem. The suitable vector is chosen from the random vectors. This yields lower peak-to-average power ratio than a conventional method.

  • Sequence-Based Schemes for Broadcast and Unicast under Frequency Division Duplex

    Fang LIU  Kenneth W. SHUM  Yijin ZHANG  Wing Shing WONG  

     
    INVITED PAPER-Communication Theory and Signals

      Vol:
    E104-A No:2
      Page(s):
    376-383

    We consider all-to-all broadcast and unicast among nodes in a multi-channel single-hop ad hoc network, with no time synchronization. Motivated by the hard delay requirement for ultra-reliable and low-latency communication (URLLC) in 5G wireless networks, we aim at designing medium access control (MAC) schemes to guarantee successful node-to-node transmission within a bounded delay. To provide a hard guarantee on the transmission delay, deterministic sequence schemes are preferred to probabilistic schemes such as carrier sense multiple access (CSMA). Therefore, we mainly consider sequence schemes, with the goal to design schedule sequence set to guarantee successful broadcast/unicast within a common sequence period. This period should be as short as possible since it determines an upper bound on the transmission delay. In previous works, we have considered sequence design under time division duplex (TDD). In this paper, we focus on another common duplex mode, frequency division duplex (FDD). For the FDD case, we present a lower bound on period of feasible sequence sets, and propose a sequence construction method by which the sequence period can achieve the same order as the lower bound, for both broadcast and unicast models. We also compare the sequence length for FDD with that for TDD.

  • Generation Method of Two-Dimensional Optical ZCZ Sequences with High Correlation Peak Value

    Takahiro MATSUMOTO  Hideyuki TORII  Yuta IDA  Shinya MATSUFUJI  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E104-A No:2
      Page(s):
    417-421

    In this paper, we propose new generation methods of two-dimensional (2D) optical zero-correlation zone (ZCZ) sequences with the high peak autocorrelation amplitude. The 2D optical ZCZ sequence consists of a pair of a binary sequence which takes 1 or 0 and a bi-phase sequence which takes 1 or -1, and has a zero-correlation zone in the two-dimensional correlation function. Because of these properties, the 2D optical ZCZ sequence is suitable for optical code-division multiple access (OCDMA) system using an LED array having a plurality of light-emitting elements arranged in a lattice pattern. The OCDMA system using the 2D optical ZCZ sequence can be increased the data rate and can be suppressed interference by the light of adjacent LEDs. By using the proposed generation methods, we can improve the peak autocorrelation amplitude of the sequence. This means that the BER performance of the OCDMA system using the sequence can be improved.

  • Expectation Propagation Decoding for Sparse Superposition Codes Open Access

    Hiroki MAYUMI  Keigo TAKEUCHI  

     
    LETTER-Coding Theory

      Pubricized:
    2020/07/06
      Vol:
    E103-A No:12
      Page(s):
    1666-1669

    Expectation propagation (EP) decoding is proposed for sparse superposition coding in orthogonal frequency division multiplexing (OFDM) systems. When a randomized discrete Fourier transform (DFT) dictionary matrix is used, the EP decoding has the same complexity as approximate message-passing (AMP) decoding, which is a low-complexity and powerful decoding algorithm for the additive white Gaussian noise (AWGN) channel. Numerical simulations show that the EP decoding achieves comparable performance to AMP decoding for the AWGN channel. For OFDM systems, on the other hand, the EP decoding is much superior to the AMP decoding while the AMP decoding has an error-floor in high signal-to-noise ratio regime.

  • An Optimal Power Allocation Scheme for Device-to-Device Communications in a Cellular OFDM System

    Gil-Mo KANG  Cheolsoo PARK  Oh-Soon SHIN  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2020/06/02
      Vol:
    E103-A No:12
      Page(s):
    1670-1673

    We propose an optimal power allocation scheme that maximizes the transmission rate of device-to-device (D2D) communications underlaying a cellular system based on orthogonal frequency division multiplexing (OFDM). The proposed algorithm first calculates the maximum allowed transmission power of a D2D transmitter to restrict the interference caused to a cellular link that share the same OFDM subchannels with the D2D link. Then, with a constraint on the maximum transmit power, an optimization of water-filling type is performed to find the optimal transmit power allocation across subchannels and within each subchannel. The performance of the proposed power allocation scheme is evaluated in terms of the average achievable rate of the D2D link.

  • Ultra-Low Crosstalk Multi-Core Fiber with Standard 125-μm Cladding Diameter for 10,000km-Class Long-Haul Transmission Open Access

    Yuto SAGAE  Takashi MATSUI  Taiji SAKAMOTO  Kazuhide NAKAJIMA  

     
    INVITED PAPER

      Pubricized:
    2020/06/08
      Vol:
    E103-B No:11
      Page(s):
    1199-1205

    We propose an ultra-low inter-core crosstalk (XT) multi-core fiber (MCF) with standard 125-μm cladding. We show the fiber design and fabrication results of an MCF housing four cores with W-shaped index profile; it offers XT of less than -67dB/km over the whole C+L band. This enables us to realize 10,000-km transmission with negligible XT penalty. We also observe a low-loss of 0.17dB/km (average) at a wavelength of 1.55μm and other optical properties compatible with ITU-T G.654.B fiber. We also elucidate its good micro-bend resistance in terms of both the loss and XT to confirm its applicability to high-density optical fiber cables. Finally, we show that the fabricated MCF is feasible along with long-distance transmission by confirming that the XT noise performance corresponds to transmission distances of 10,000km or more.

  • Remote Pumped All Optical Wavelength Converter for Metro-Core Photonic Networks

    Ryota TSUJI  Daisuke HISANO  Ken MISHINA  Akihiro MARUTA  

     
    PAPER

      Pubricized:
    2020/05/20
      Vol:
    E103-B No:11
      Page(s):
    1282-1290

    Wavelength division multiplexing (WDM) scheme is used widely in photonic metro-core networks. In a WDM network, wavelength continuity constraint is employed to simply construct relay nodes. This constraint reduces the wavelength usage efficiency of each link. To improve the same, an all-optical wavelength converter (AO-WC) has been attracting attention in recent years. In particular, an AO-WC is a key device because it enables simultaneous conversion of multiple wavelengths of signal lights to other wavelengths, independent of the modulation format. However, each AO-WC requires installation of multiple laser sources with narrow bandwidth because the lights emitted by the laser sources are used as pump lights when the wavelengths of the signal lights are converted by the four-wave mixing (FWM) process. To reduce the number of laser sources, we propose a remote pumped AO-WC, in which the laser sources of the pump lights are aggregated into several relay nodes. When the request for the wavelength conversion from the relay node without the laser source is conveyed, the relay node with the laser source transmits the pump light through the optical link. The proposed scheme enables reduction in the number of laser sources of the pump lights. Herein we analyze the distortion of the pump light by propagating it through the optical link We also evaluate the effect of the noise in optical amplifiers and nonlinearities in optical fibers using numerical simulations employing the representative parameters for a practical WDM network.

  • Successive Interference Cancellation of ICA-Aided SDMA for GFSK Signaling in BLE Systems

    Masahiro TAKIGAWA  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/11/12
      Vol:
    E103-B No:5
      Page(s):
    495-503

    This paper proposes a successive interference cancellation (SIC) of independent component analysis (ICA) aided spatial division multiple access (SDMA) for Gaussian filtered frequency shift keying (GFSK) in Bluetooth low energy (BLE) systems. The typical SDMA scheme requires estimations of channel state information (CSI) using orthogonal pilot sequences. However, the orthogonal pilot is not embedded in the BLE packet. This fact motivates us to add ICA detector into BLE systems. In this paper, focusing on the covariance matrix of ICA outputs, SIC can be applied with Cholesky decomposition. Then, in order to address the phase ambiguity problems created by the ICA process, we propose a differential detection scheme based on the MAP algorithm. In practical scenarios, it is subject to carrier frequency offset (CFO) as well as symbol timing offset (STO) induced by the hardware impairments present in the BLE peripherals. The packet error rate (PER) performance is evaluated by computer simulations when BLE peripherals simultaneously communicate in the presence of CFO and STO.

  • Outage Performance of Multi-Carrier Relay Selections in Multi-Hop OFDM with Index Modulation

    Pengli YANG  Fuqi MU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E103-A No:3
      Page(s):
    638-642

    In this letter, we adopt two multi-carrier relay selections, i.e., bulk and per-subcarrier (PS), to the multi-hop decode-and-forward relaying orthogonal frequency-division multiplexing with index modulation (OFDM-IM) system. Particularly, in the form of average outage probability (AOP), the influence of joint selection and non-joint selection acting on the last two hops on the system is analyzed. The closed-form expressions of AOPs and the asymptotic AOPs expressions at high signal-to-noise ratio are given and verified by numerical simulations. The results show that both bulk and PS can achieve full diversity order and that PS can provide additional power gain compared to bulk when JS is used. The theoretical analyses in this letter provide an insight into the combination of OFDM-IM and cooperative communication.

  • On Performance of Deep Learning for Harmonic Spur Cancellation in OFDM Systems

    Ziming HE  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E103-A No:2
      Page(s):
    576-579

    In this letter, the performance of a state-of-the-art deep learning (DL) algorithm in [5] is analyzed and evaluated for orthogonal frequency-division multiplexing (OFDM) receivers, in the presence of harmonic spur interference. Moreover, a novel spur cancellation receiver structure and algorithm are proposed to enhance the traditional OFDM receivers, and serve as a performance benchmark for the DL algorithm. It is found that the DL algorithm outperforms the traditional algorithm and is much more robust to spur carrier frequency offset.

  • Sign Reversal Channel Switching Method in Space-Time Block Code for OFDM Systems

    Hyeok Koo JUNG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E103-A No:2
      Page(s):
    567-570

    This paper proposes a simple source data exchange method for channel switching in space-time block code. If one transmits source data on another antenna, then the receiver should change combining method in order to adapt it. No one except knowing the channel switching sequence can decode the received data correctly. In case of exchanging data for channel switching, four orthogonal frequency division multiplexing symbols are exchanged according to a format of space-time block code. In this paper, I proposes two simple sign exchanges without exchanging four orthogonal-frequency division multiplexing symbols which occurs a different combining and channel switching method in the receiver.

21-40hit(562hit)