The search functionality is under construction.

Keyword Search Result

[Keyword] division(562hit)

101-120hit(562hit)

  • Analysis on Effectiveness of Fractional Frequency Reuse for Uplink Using SC-FDMA in Cellular Systems

    Masashi FUSHIKI  Takeo OHSEKI  Satoshi KONISHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:7
      Page(s):
    1457-1466

    Single Carrier — Frequency Domain Multiple Access (SC-FDMA) is a multiple access technique employed in LTE uplink transmission. SC-FDMA can improve system throughput by frequency selective scheduling (FSS). In cellular systems using SC-FDMA in the uplink, interference arising from user equipments (UEs) in neighboring cells degrades the system throughput, especially the throughput of cell-edge UEs. In order to overcome this drawback, many papers have considered fractional frequency reuse (FFR) techniques and analyzed their effectiveness. However, these studies have come to different conclusions regarding the effectiveness of FFR because the throughput gain of FFR depends on the frequency reuse design and evaluation conditions. Previous papers have focused on the frequency reuse design. Few papers have examined the conditions where FFR is effective, and only the UE traffic conditions have been evaluated. This paper reveals other conditions where FFR is effective by demonstrating the throughput gain of FFR. In order to analyze the throughput gain of FFR, we focus on the throughput relationship between FFR and FSS. System level simulation results demonstrate that FFR is effective when the following conditions are met: (i) the number of UEs is small and (ii) the multipath delay spread is large or close to 0.

  • Unified Analysis of ICI-Cancelled OFDM Systems in Doubly-Selective Channels

    Chi KUO  Jin-Fu CHANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:7
      Page(s):
    1435-1448

    The effect of transceiver impairments (consisting of frequency offset, phase noise and doubly-selective channel) is a key factor for determining performance of an orthogonal frequency-division multiplexing (OFDM) system since the transceiver impairments trigger intercarrier interference (ICI). These impairments are well known and have been investigated separately in the past. However, these impairments usually arise concurrently and should be jointly considered from the perspectives of both receiver design and system evaluation. In this research, impact of these impairments on an OFDM system is jointly analyzed and the result degenerates to the special case where only a specific impairment is present. A mitigation method aided by segment-by-segment time-domain interpolation (STI) is then proposed following the analysis. STI is general, and its weights can be specified according to the interpolation method and system requirements. Computer simulation is used to validate the analysis and to compare the performance of the proposed method with those of other proposals.

  • Petabit/s Optical Transmission Using Multicore Space-Division-Multiplexing Open Access

    Hidehiko TAKARA  Tetsuo TAKAHASHI  Kazuhide NAKAJIMA  Yutaka MIYAMOTO  

     
    INVITED PAPER

      Vol:
    E97-B No:7
      Page(s):
    1259-1264

    The paper presents ultra-high-capacity transmission technologies based on multi-core space-division-multiplexing. In order to realize high-capacity multi-core fiber (MCF) transmission, investigation of low crosstalk fiber and connection technology is important, and high-density signal generation using multilevel modulation and crosstalk management are also key technologies. 1Pb/s multi-core fiber transmission experiment using space-division-multiplexing is also described.

  • Behavior of Inter-Core Crosstalk as a Noise and Its Effect on Q-Factor in Multi-Core Fiber

    Tetsuya HAYASHI  Takashi SASAKI  Eisuke SASAOKA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E97-B No:5
      Page(s):
    936-944

    The stochastic behavior of inter-core crosstalk in multi-core fiber is discussed based on a theoretical model validated by measurements, and the effect of the crosstalk on the Q-factor in transmission systems, using multi-core fiber is investigated theoretically. The measurements show that the crosstalk rapidly changes with wavelength, and gradually changes with time, in obedience to the Gaussian distribution in I-Q planes. Therefore, the behavior of the crosstalk as a noise may depend on the bandwidth of the signal light. If the bandwidth is adequately broad, the crosstalk may behave as a virtual additive white Gaussian noise on I-Q planes, and the Q-penalty at the Q-factor of 9.8dB is less than 1dB when the statistical mean of the crosstalk from other cores is less than -16.7dB for PDM-QPSK, -23.7dB for PDM-16QAM, and -29.9dB for PDM-64QAM. If the bandwidth is adequately narrow, the crosstalk may behave as virtually static coupling that changes very gradually with time and heavily depends on the wavelength. To cope with a static crosstalk much higher than its statistical mean, a margin of several decibels from the mean crosstalk may be necessary for suppressing Q-penalty in the case of adequately narrow bandwidth.

  • Implementation of an Elliptic Curve Scalar Multiplication Method Using Division Polynomials

    Naoki KANAYAMA  Yang LIU  Eiji OKAMOTO  Kazutaka SAITO  Tadanori TERUYA  Shigenori UCHIYAMA  

     
    LETTER

      Vol:
    E97-A No:1
      Page(s):
    300-302

    We implemented a scalar multiplication method over elliptic curves using division polynomials. We adapt an algorithm for computing elliptic nets proposed by Stange. According to our experimental results, the scalar multiplication method using division polynomials is faster than the binary method in an affine coordinate system.

  • Fast DFRFT Robust Watermarking Algorithm Based on the Arnold Scrambling and OFDM Coding

    Wenkao YANG  Jing GUO  Enquan LI  

     
    PAPER-Multimedia Systems for Communications

      Vol:
    E97-B No:1
      Page(s):
    218-225

    Combining the strong anti-interference advantages of OFDM technology and the time-frequency analysis features of fractional Fourier transform (FFT), we apply OFDM as the coding modulation technology for digital watermarking. Based on the Arnold scrambling and OFDM coding, an innovative DFRFT digital watermarking algorithm is proposed. First, the watermark information is subjected to the Arnold scrambling encryption and OFDM coding transform. Then it is embedded into the FFT domain amplitude. The three parameters of scrambling iterations number, t, FFT order, p, and the watermark information embedded position, L, are used as keys, so that the algorithm has high safety. A simulation shows that the algorithm is highly robust against noise, filtering, compression, and other general attacks. The algorithm not only has strong security, but also makes a good balance between invisibility and robustness. But the possibility of using OFDM technique in robust image watermarking has drawn a very little attention.

  • Network Designs for Cycle-Attack-Free Logical-Tree Topologies in Optical CDM Networks

    Tatsuya FUKUDA  Ken-ichi BABA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E96-B No:12
      Page(s):
    3070-3079

    Optical Code Division Multiplexing (OCDM) is a multiplexing technology for constructing future all-optical networks. Compared with other multiplexing technologies, it can be easily controlled and can establish lightpaths of smaller granularity. However, previous research has revealed that OCDM networks are vulnerable to cycle attacks. Cycle attacks are caused by multi-access interference (MAI), which is crosstalk noise on the same wavelength in OCDM networks. If cycle attacks occur, they disrupt all network services immediately. Previous research has proposed a logical topology design that is free of cycle attacks. However, this design assumes that path assignment is centrally controlled. It also does not consider the delay between each node and the centralized controller. In this paper, we propose novel logical topology designs that are free of cycle attacks and methods of establishing paths. The basic concepts underlying our methods are to autonomously construct a cycle-attack-free logical topology and to establish lightpaths by using a distributed controller. Our methods can construct a logical network and establish lightpaths more easily than the previous method can. In addition, they have network scalability because of their distributed control. Simulation results show that our methods have lower loss probabilities than the previous method and better mean hop counts than the centralized control approach.

  • Outage Channel Capacity of Direct/Cooperative AF Relay Switched SC-FDMA Using Spectrum Division/Adaptive Subcarrier Allocation

    Masayuki NAKADA  Tatsunori OBARA  Tetsuya YAMAMOTO  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:4
      Page(s):
    1001-1011

    In this paper, a direct/cooperative relay switched single carrier-frequency division multiple access (SC-FDMA) using amplify-and-forward (AF) protocol and spectrum division/adaptive subcarrier allocation (SDASA) is proposed. Using SDASA, the transmit SC signal spectrum is divided into sub-blocks, to each of which a different set of subcarriers (resource block) is adaptively allocated according to the channel conditions of mobile terminal (MT)-relay station (RS) link, RS-base station (BS) link, and MT-BS link. Cooperative relay does not always provide higher capacity than the direct communication. Switching between direct communication and cooperative relay is done depending on the channel conditions of MT-RS, RS-BS, and MT-BS links. We evaluate the achievable channel capacity by the Monte-Carlo numerical computation method. It is shown that the proposed scheme can reduce the transmit power by about 6.0 (2.0) dB compared to the direct communication (the cooperative AF relay) for a 1%-outage capacity of 3.0 bps/Hz.

  • Unified Time-Frequency OFDM Transmission with Self Interference Cancellation

    Changyong PAN  Linglong DAI  Zhixing YANG  

     
    PAPER-Communication Theory and Signals

      Vol:
    E96-A No:4
      Page(s):
    807-813

    Time domain synchronous orthogonal frequency division multiplexing (TDS-OFDM) has higher spectral efficiency than the standard cyclic prefix OFDM (CP-OFDM) OFDM by replacing the random CP with the known training sequence (TS), which could be also used for synchronization and channel estimation. However, TDS-OFDM requires suffers from performance loss over fading channels due to the iterative interference cancellation has to be used to remove the mutual interferences between the TS and the useful data. To solve this problem, the novel TS based OFDM transmission scheme, referred to as the unified time-frequency OFDM (UTF-OFDM), is proposed in which the time-domain TS and the frequency-domain pilots are carefully designed to naturally avoid the interference from the TS to the data without any reconstruction. The proposed UTF-OFDM based flexible frame structure supports effective channel estimation and reliable channel equalization, while imposing a significantly lower complexity than the TDS-OFDM system at the cost of a slightly reduced spectral efficiency. Simulation results demonstrate that the proposed UTF-OFDM substantially outperforms the existing TDS-OFDM, in terms of the system's achievable bit error rate.

  • Mobile Backhaul Optical Access Networks for Coordinated Multipoint Transmission/Reception (CoMP) Techniques in Future Cellular Systems Open Access

    Changsoon CHOI  Thorsten BIERMANN  Qing WEI  Kazuyuki KOZU  Masami YABUSAKI  

     
    INVITED PAPER

      Vol:
    E96-C No:2
      Page(s):
    147-155

    This paper describes mobile backhaul optical access network designs for future cellular systems, in particular, for those systems that exploit coordinated multipoints (CoMP) transmission/reception techniques. Wavelength-division-multiplexing passive optical networks (WDM-PON) are primarily considered and two proposals to enhance mobile backhaul capability of WDM-PONs for CoMP are presented. One is physical X2 links that support dedicated low latency and high capacity data exchange between base stations (BSs). The other is multicasting in WDM-PONs. It effectively reduces data/control transmission time from central node to multiple BSs joining CoMP. Evaluation results verify that the proposed X2 links and the multicasting enable more BSs to join CoMP by enhancing the mobile backhaul capability, which results in improved service quality for users.

  • Improved Frequency Offset Estimation in OFDM Systems Using Periodic Training Sequence

    Chi KUO  Jin-Fu CHANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:2
      Page(s):
    585-594

    In this paper, an extended best linear unbiased estimator (EBLUE) based on a periodic training sequence is proposed and investigated for frequency offset estimation in orthogonal frequency division multiplexing (OFDM) systems. The structure of EBLUE is general and flexible so it adapts to different complexity constraints, and is attractive in practical implementation. Performance analysis and design strategy of EBLUE are provided to realize the best tradeoff between performance and complexity. Moreover, closed-form results of both weight and performance make EBLUE even more attractive in practical implementation. Both the performance and complexity of EBLUE are compared with other proposals and the Cramer-Rao lower bound (CRLB) to demonstrate the merit of EBLUE.

  • On the Asymptotic Optimality of Fixed Rate Scheduling in Fading Multiuser Wideband OFDM Networks

    Xiangyu GAO  Yuesheng ZHU  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E96-B No:2
      Page(s):
    632-634

    In this letter, we prove that for fading multiuser orthogonal frequency division multiplexing networks, a simple fixed rate scheduling scheme with only 1 bit channel state information feedback is capable of achieving the optimal performance in the wideband limit. This result indicates that the complexities of both the feedback and channel coding schemes can be reduced with nearly no system performance penalty in wideband wireless communication environments.

  • Construction of Shift Distinct Sequence Sets with Zero or Low Correlation Zone

    Xiaoyu CHEN  Chengqian XU  Yubo LI  Kai LIU  

     
    LETTER-Coding Theory

      Vol:
    E96-A No:1
      Page(s):
    377-382

    A construction of shift sequence sets is proposed. Multiple distinct shift sequence sets are obtained by changing the parameters of the shift sequences. The shift sequences satisfy the conditions that P|L and P ≥ 2, where P is the length of the shift sequences, L is the length of the zero-correlation zone or low-correlation zone (ZCZ/LCZ). Then based on these shift sequence sets, many shift distinct ZCZ/LCZ sequence sets are constructed by using interleaving technique and complex Hadamard matrices. Furthermore, the new construction is optimal under the conditions proposed in this paper. Compared with previous constructions, the proposed construction extends the number of shift distinct ZCZ/LCZ sequence sets, so that more sequence sets are obtained for multi-cell quasi-synchronous code-division multiple access (QS-CDMA) systems.

  • A Greedy Genetic Algorithm for the TDMA Broadcast Scheduling Problem

    Chih-Chiang LIN  Pi-Chung WANG  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E96-D No:1
      Page(s):
    102-110

    The broadcast scheduling problem (BSP) in wireless ad-hoc networks is a well-known NP-complete combinatorial optimization problem. The BSP aims at finding a transmission schedule whose time slots are collision free in a wireless ad-hoc network with time-division multiple access (TDMA). The transmission schedule is optimized for minimizing the frame length of the node transmissions and maximizing the utilization of the shared channel. Recently, many metaheuristics can optimally solve smaller problem instances of the BSP. However, for complex problem instances, the computation of metaheuristics can be quite time and memory consuming. In this work, we propose a greedy genetic algorithm for solving the BSP with a large number of nodes. We present three heuristic genetic operators, including a greedy crossover and two greedy mutation operators, to optimize both objectives of the BSP. These heuristic genetic operators can generate good solutions. Our experiments use both benchmark data sets and randomly generated problem instances. The experimental results show that our genetic algorithm is effective in solving the BSP problem instances of large-scale networks with 2,500 nodes.

  • An EM Algorithm-Based Disintegrated Channel Estimator for OFDM AF Cooperative Relaying

    Jeng-Shin SHEU  Wern-Ho SHEEN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:1
      Page(s):
    254-262

    The cooperative orthogonal frequency-division multiplexing (OFDM) relaying system is widely regarded as a key design for future broadband mobile cellular systems. This paper focuses on channel estimation in such a system that uses amplify-and-forward (AF) as the relaying strategy. In the cooperative AF relaying, the destination requires the individual (disintegrated) channel state information (CSI) of the source-relay (S-R) and relay-destination (R-D) links for optimum combination of the signals received from source and relay. Traditionally, the disintegrated CSIs are obtained with two channel estimators: one at the relay and the other at the destination. That is, the CSI of the S-R link is estimated at relay and passed to destination, and the CSI of the R-D link is estimated at destination with the help of pilot symbols transmitted by relay. In this paper, a new disintegrated channel estimator is proposed; based on an expectation-maximization (EM) algorithm, the disintegrated CSIs can be estimated solely by the estimator at destination. Therefore, the new method requires neither signaling overhead for passing the CSI of the S-R link to destination nor pilot symbols for the estimation of the R-D link. Computer simulations show that the proposed estimator works well under the signal-to-noise ratios of interest.

  • Two-Dimensional Optical CDMA Systems Based on MWOOC with Generalized Prime Sequences

    Agus SUSILO  Tomoko K. MATSUSHIMA  Yasuaki TERAMACHI  

     
    PAPER-Spread Spectrum

      Vol:
    E95-A No:12
      Page(s):
    2160-2167

    Two-dimensional (2-D) codes for optical code-division multiple access (O-CDMA) systems can increase the number of subscribers and simultaneous users as compared to one-dimensional time-spreading codes. Multiple-wavelength optical orthogonal code (MWOOC), which is one of the 2-D codes, uses prime sequences as a wavelength-hopping code and an optical orthogonal code (OOC) as a time-spreading code. MWOOCs have some advantages over other 2-D codes especially in high bit-rate O-CDMA systems. The only drawback of MWOOC is that the performance degrades significantly when the number of wavelengths is not prime. Recently a generalized class of modified prime sequence codes (MPSCs), which includes the class of original MPSCs as its subclass, was presented. An important property of generalized MPSCs is that the codes can be constructed over not only prime fields but also extension fields. It has been shown that the correlation property of generalized MPSCs is the same as that of the original MPSCs. This paper investigates MWOOC with generalized prime sequences, which can be obtained in the process of generating the generalized MPSCs, as a wavelength-hopping code. Use of the generalized prime sequences can solve the nonprime problem of MWOOCs. The average error probability of the proposed MWOOCs is formulated theoretically and numerical results are compared with that of the original schemes. It is shown that nonprime numbers, such as 2m, 3m and 5m, can be also taken as the number of wavelengths without degrading the system performance in the proposed systems.

  • A Novel Two-Layer Data Transmission Scheme in TDS-OFDM System

    Wenting CHANG  Jintao WANG  Bo AI  

     
    LETTER-Multimedia Systems for Communications

      Vol:
    E95-B No:11
      Page(s):
    3637-3641

    A scheme that modulates the training sequence is proposed to support two-layer data streams in the time domain synchronous orthogonal frequency division multiplex (TDS-OFDM) systems. A theoretical analysis and computer simulation show that the proposed scheme works well and that the two layer data streams are compatible with each other.

  • An Improved Channel Shortening Method with Application to MC-CDMA Systems

    Mizuki KOTAKE  Teruyuki MIYAJIMA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E95-A No:11
      Page(s):
    1955-1962

    In block transmissions, inter-block interference (IBI) due to delayed waves exceeding a cyclic prefix severely limits the performance. To suppress IBI in downlink MC-CDMA systems, this paper proposes a novel channel shortening method using a time-domain equalizer. The proposed method minimizes a cost function related to equalizer output autocorrelations without the transmission of training symbols. We prove that the method can shorten a channel and suppress IBI completely. Simulation results show that the proposed method can significantly suppress IBI using relatively less number of received blocks than a conventional method when the number of users is moderate.

  • On the Cross-Correlation Distributions of p-Ary m-Sequences and Their Decimated Sequences

    Sung-Tai CHOI  Jong-Seon NO  

     
    INVITED PAPER

      Vol:
    E95-A No:11
      Page(s):
    1808-1818

    In this paper, we analyze the existing results to derive the cross-correlation distributions of p-ary m-sequences and their decimated sequences for an odd prime p and various decimations d. Based on the previously known results, a methodology to obtain the distribution of their cross-correlation values is also formulated.

  • Low-Cost Perturbation-Based ICI Equalizers for OFDMA Mobile Systems

    Hsin-De LIN  Tzu-Hsien SANG  Jiunn-Tsair CHEN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:11
      Page(s):
    3509-3518

    For advanced mobile communication systems that adopt orthogonal frequency-division multiple access (OFDMA) technologies, intercarrier interference (ICI) significantly degrades performance when mobility is high. Standard specifications and concerns about complexity demand low-cost methods with deployment readiness and decent performance. In this paper, novel zero forcing (ZF) and minimum mean-square error (MMSE) equalizers based on per-subcarrier adaptive (PSA) processing and perturbation-based (PB) approximation are introduced. The proposed equalizers strike a good balance between implementation cost and performance; therefore they are especially suitable for OFDMA downlink receivers. Theoretical analysis and simulations are provided to verify our claims.

101-120hit(562hit)