The search functionality is under construction.

Keyword Search Result

[Keyword] division(562hit)

81-100hit(562hit)

  • Analysis of Oversampling Effect on Selected Mapping Scheme Using CORR Metric

    Jun-Young WOO  Kee-Hoon KIM  Kang-Seok LEE  Jong-Seon NO  Dong-Joon SHIN  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E99-B No:2
      Page(s):
    364-369

    It is known that in the selected mapping (SLM) scheme for orthogonal frequency division multiplexing (OFDM), correlation (CORR) metric outperforms the peak-to-average power ratio (PAPR) metric in terms of bit error rate (BER) performance. It is also well known that four times oversampling is used for estimating the PAPR performance of continuous OFDM signal. In this paper, the oversampling effect of OFDM signal is analyzed when CORR metric is used for the SLM scheme in the presence of nonlinear high power amplifier. An analysis based on the correlation coefficients of the oversampled OFDM signals shows that CORR metric of two times oversampling in the SLM scheme is good enough to achieve the same BER performance as four times and 16 times oversampling cases. Simulation results confirm that for the SLM scheme using CORR metric, the BER performance for two times oversampling case is almost the same as that for four and 16 times oversampling cases.

  • Frequency Division Multiplexed Radio-on-Fiber Link Employing an Electro-Absorption Modulator Integrated Laser Diode for a Cube Satellite Earth Station

    Seiji FUKUSHIMA  Takayuki SHIMAKI  Kota YAMASHITA  Taishi FUNASAKO  Tomohiro HACHINO  

     
    PAPER

      Vol:
    E99-C No:2
      Page(s):
    212-218

    Recent small cube satellites use higher frequency bands such as Ku-band for higher throughput communications. This requires high-frequency link in an earth radio station as well. As one of the solutions, we propose usage of bidirectional radio-on-fiber link employing a wavelength multiplexing scheme. It was numerically shown that the response linearity of the electro-absorption modulator integrated laser (EML) is sufficient and that the spurious emissions are lower enough or can be reduced by the radio-frequency filters. From the frequency response and the single-sideband phase noise measurements, the EML was proved to be used in a radio-on-fiber system of the cube satellite earth station.

  • Optical Layer 2 Switch Network with Bufferless Optical TDM and Dynamic Bandwidth Allocation

    Kyota HATTORI  Toru HOMEMOTO  Masahiro NAKAGAWA  Naoki KIMISHIMA  Masaru KATAYAMA  Akira MISAWA  

     
    PAPER

      Vol:
    E99-C No:2
      Page(s):
    189-202

    The traffic of the future aggregation network will dynamically change not only in volume but also destination to support the application of virtualization technology to network edge equipment to achieve cost-effectiveness. Therefore, future aggregation network will have to accommodate this traffic cost-effectively, despite dynamic changes in both volume and destination. To correspond to this trend, in this paper, we propose an optical layer 2 switch network based on bufferless optical time division multiplexing (TDM) and dynamic bandwidth allocation to achieve a future aggregation network cost-effectively. We show here that our proposed network architecture effectively reduced the number of wavelengths and optical interfaces by application of bufferless optical TDM technology and dynamic bandwidth allocation to the aggregation network.

  • A Low-Complexity PTS Scheme with the Hybrid Subblock Partition Method for PAPR Reduction in OFDM Systems

    Sheng-Ju KU  Yuan OUYANG  Chiachi HUANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:11
      Page(s):
    2341-2347

    The technique of partial transmit sequences (PTS) is effective in reducing the peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals. However, the conventional PTS (CPTS) scheme has high computation complexity because it needs several inverse fast Fourier transform (IFFT) units and an optimization process to find the candidate signal with the lowest PAPR. In this paper, we propose a new low-complexity PTS scheme for OFDM systems, in which a hybrid subblock partition method (SPM) is used to reduce the complexity that results from the IFFT computations and the optimization process. Also, the PAPR reduction performance of the proposed PTS scheme is further enhanced by multiplying a selected subblock with a predefined phase rotation vector to form a new subblock. The time-domain signal of the new subblock can be obtained simply by performing a circularly-shift-left operation on the IFFT output of the selected subblock. Computer simulations show that the proposed PTS scheme achieves a PAPR reduction performance close to that of the CPTS scheme with the pseudo-random SPM, but with much lower computation complexity.

  • Distributed Utility Maximization with Backward Physical Signaling in Interference-Limited Wireless Systems

    Hye J. KANG  Chung G. KANG  

     
    PAPER-Network

      Vol:
    E98-B No:10
      Page(s):
    2033-2039

    In this paper, we consider a distributed power control scheme that can maximize overall capacity of an interference-limited wireless system in which the same radio resource is spatially reused among different transmitter-receiver pairs. This power control scheme employs a gradient-descent method in each transmitter, which adapts its own transmit power to co-channel interference dynamically to maximize the total weighted sum rate (WSR) of the system over a given interval. The key contribution in this paper is to propose a common feedback channel, over which a backward physical signal is accumulated for computing the gradient of the transmit power in each transmitter, thereby significantly reducing signaling overhead for the distributed power control. We show that the proposed power control scheme can achieve almost 95% of its theoretical upper WSR bound, while outperforming the non-power-controlled system by roughly 63% on average.

  • Proposal of Capacity Analysis in Wireless Sensor Networks with Multi-Hop Transmissions and Hidden Nodes

    Yun WEN  Kazuyuki OZAKI  Hiroshi FUJITA  Teruhisa NINOMIYA  Makoto YOSHIDA  

     
    PAPER

      Vol:
    E98-B No:9
      Page(s):
    1749-1757

    Wireless sensor networks play an important role in several industries. Ad-hoc networks with multi-hop transmissions are considered suitable for wireless sensor networks because of their high scalability and low construction cost. However, a lack of centralized control makes it difficult to respond to congestion when system capacity is exceeded. Therefore, the analysis of system capacity is a critical issue for system design. In this paper, we propose a novel zone division model to analyze the capacity of multi-hop wireless sensor networks using carrier sense multiple access with collision avoidance protocols. We divide the one-hop area to a gateway (GW) into two zones: an outer zone, where access nodes (ANs) can relay packets from multi-hop ANs, and an inner zone where ANs cannot relay packets. Using this approach, we calculate the packet loss for each zone to estimate the capacity, considering the difference in the communication range of the GW and ANs, as well as the collision with hidden nodes. Comparisons with simulation results and the conventional method show that our model achieves higher estimation accuracy.

  • Re-Configurable Wavelength De-Multiplexer in Wavelength Division Multiplexed Radio-over-Fiber Systems for Frequency-Modulated Continuous-Wave Signal Delivery

    Toshiaki KURI  Atsushi KANNO  Tetsuya KAWANISHI  

     
    PAPER-MWP Sensing Technique

      Vol:
    E98-C No:8
      Page(s):
    849-856

    A re-configurable wavelength de-multiplexer for wave-length-division-multiplexed (WDM) radio-over-fiber (RoF) systems, which is specially designed for delivering frequency-modulated continuous-wave (FM-CW) signals, is newly developed. The principle and characteristics of the developed de-multiplexer are described in detail. Then the de-multiplexing performances of 4-channel WDM 32-GHz-band, 8-channel WDM 48-GHz-band, and 5-channel WDM 96-GHz-band FM-CW RoF signals are evaluated with the de-multiplexer.

  • Simple Derivation of the Lifetime and the Distribution of Faces for a Binary Subdivision Model

    Yukio HAYASHI  

     
    LETTER-Graphs and Networks

      Vol:
    E98-A No:8
      Page(s):
    1841-1844

    The iterative random subdivision of rectangles is used as a generation model of networks in physics, computer science, and urban planning. However, these researches were independent. We consider some relations in them, and derive fundamental properties for the average lifetime depending on birth-time and the balanced distribution of rectangle faces.

  • Analog Cancellation for Full-Duplex Wireless in Multipath Self-Interference Channels

    Jong-Ho LEE  Ji-won CHOI  Jae-Hoon JUNG  Seong-Cheol KIM  Yong-Hwa KIM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:4
      Page(s):
    646-652

    In this paper, we propose an analog cancellation scheme for multipath self-interference channels in full-duplex wireless orthogonal frequency-division multiplexing (OFDM) systems. The conventional approaches emulate the radio-frequency (RF) self-interference signals by passing the RF transmit signals through delay lines and programmable attenuators. By contrast, our proposed scheme computes the phase-rotated and weighted versions of the baseband transmit signals in the baseband domain, which are simply upconverted to obtain the emulated RF self-interference signals. Numerical results are presented to verify the suppression performance of the proposed scheme.

  • An Optimized Algorithm for Dynamic Routing and Wavelength Assignment in WDM Networks with Sparse Wavelength Conversion

    Liangrui TANG  Sen FENG  Jianhong HAO  Bin LI  Xiongwen ZHAO  Xin WU  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E98-B No:2
      Page(s):
    296-302

    The dynamic routing and wavelength assignment (RWA) problem in wavelength division multiplexing (WDM) optical networks with sparse wavelength conversion has been a hot research topic in recent years. An optimized algorithm based on a multiple-layered interconnected graphic model (MIG) for the dynamic RWA is presented in this paper. The MIG is constructed to reflect the actual WDM network topology. Based on the MIG, the link cost is given by the conditions of available lightpath to calculate an initial solution set of optimal paths, and by combination with path length, the optimized solution using objective function is determined. This approach simultaneously solves the route selection and wavelength assignment problem. Simulation results demonstrate the proposed MIG-based algorithm is effective in reducing blocking probability and boosting wavelength resource utilization compared with other RWA methods.

  • Minimization of the Fabrication Cost for a Bridged-Bus-Based TDMA System under Hard Real-Time Constraints

    Makoto SUGIHARA  

     
    PAPER-Network

      Vol:
    E97-D No:12
      Page(s):
    3041-3051

    Industrial applications such as automotive ones require a cheap communication mechanism to send out communication messages from node to node by their deadline time. This paper presents a design paradigm in which we optimize both assignment of a network node to a bus and slot multiplexing of a FlexRay network system under hard real-time constraints so that we can minimize the cost of wire harness for the FlexRay network system. We present a cost minimization problem as a non-linear model. We developed a network synthesis tool which was based on simulated annealing. Our experimental results show that our design paradigm achieved a 50.0% less cost than a previously proposed approach for a virtual cost model.

  • Channel Prediction Techniques for a Multi-User MIMO System in Time-Varying Environments

    Kanako YAMAGUCHI  Huu Phu BUI  Yasutaka OGAWA  Toshihiko NISHIMURA  Takeo OHGANE  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:12
      Page(s):
    2747-2755

    Although multi-user multiple-input multiple-output (MI-MO) systems provide high data rate transmission, they may suffer from interference. Block diagonalization and eigenbeam-space division multiplexing (E-SDM) can suppress interference. The transmitter needs to determine beamforming weights from channel state information (CSI) to use these techniques. However, MIMO channels change in time-varying environments during the time intervals between when transmission parameters are determined and actual MIMO transmission occurs. The outdated CSI causes interference and seriously degrades the quality of transmission. Channel prediction schemes have been developed to mitigate the effects of outdated CSI. We evaluated the accuracy of prediction of autoregressive (AR)-model-based prediction and Lagrange extrapolation in the presence of channel estimation error. We found that Lagrange extrapolation was easy to implement and that it provided performance comparable to that obtained with the AR-model-based technique.

  • A High Quality Autostereoscopy System Based on Time-Division Quadplexing Parallax Barrier Open Access

    Qu ZHANG  Hideki KAKEYA  

     
    INVITED PAPER

      Vol:
    E97-C No:11
      Page(s):
    1074-1080

    In this paper, we introduce a parallax barrier system that shows high definition autostereoscopy and holds wide viewing zone. The proposed method creates a 4-view parallax barrier system with full display resolution per view by setting aperture ratio to one quarter and using time-division quadplexing, then applies obtained 4-view to 2-view, so that the viewing zone for each eye becomes wider than that from the conventional methods. We build a prototype with two 120,Hz LCD panels and manage to achieve continuous viewing zone with common head-tracking device involved. However, moire patterns and flickers stand out, which are respectively caused by the identical alignments of the color filters on the overlaid LCD panels and a lack of refresh rate of 240,Hz. We successfully remove the moire patterns by changing the structure of the system and inserting a diffuser. We also reduce the flickers by proposing 1-pixel aperture, while stripe shaped noise due to the lack of refresh rate occurs during a blink or a saccade. The stripe noise can be effectively weakened by applying green and magenta anaglyph to the proposed system, where extra crosstalk takes place since the default RGB color filters on LCD panels share certain ranges of wavelength with each other. Although a trade-off turns out to exist between stripe noise and crosstalk from our comparison experiment, results from different settings all hold acceptable quality and show high practicability of our method. Furthermore, we propose a solution that shows possibility to satisfy both claims, where extra color filters with narrow bandwidths are required.

  • Spatial Division Transmission without Signal Processing for MIMO Detection Utilizing Two-Ray Fading

    Ken HIRAGA  Kazumitsu SAKAMOTO  Maki ARAI  Tomohiro SEKI  Tadao NAKAGAWA  Kazuhiro UEHARA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:11
      Page(s):
    2491-2501

    This paper presents a spatial division (SD) transmission method based on two-ray fading that dispenses with the high signal processing cost of multiple-input and multiple-output (MIMO) detection and antennas with narrow beamwidth. We show the optimum array geometries as functions of the transmission distance for providing a concrete array design method. Moreover, we clarify achievable channel capacity considering reflection coefficients that depend on the polarization, incident angle, and dielectric constant. When the ground surface is conductive, for two- and three-element arrays, channel capacity is doubled and tripled, respectively, over that of free space propagation. We also clarify the application limit of this method for a dielectric ground by analyzing the channel capacity's dependency on the dielectric constant. With this method, increased channel capacity by SD transmission can be obtained merely by placing antennas of wireless transceiver sets that have only SISO (single-input and single-output) capability in a two-ray propagation environment. By using formulations presented in this paper for the first time and adding discussions on the adoption of polarization multiplexing, we clarify antenna geometries of SD transmission systems using polarization multiplexing for up to six streams.

  • Maximum Likelihood Demodulators and Their Evaluations on Amplify-and-Forward Cooperative OFDM-Based Wireless LAN Systems

    Hayato FUKUZONO  Yusuke ASAI  Riichi KUDO  Koichi ISHIHARA  Masato MIZOGUCHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:11
      Page(s):
    2435-2448

    In this paper, we propose demodulators for the Golden and Alamouti codes in amplify-and-forward (AF) cooperative communication with one relay. The proposed demodulators output exact log likelihood ratios (LLRs) with recursion based on the Jacobian logarithm. The cooperative system with the proposed demodulator for the Golden code has the benefit of efficient data transmission, while the system for the Alamouti code has low demodulation complexity. Quantitative analyses of computational complexity of the proposed demodulators are conducted. The transmission performance for various relay location and power settings is evaluated on cooperative orthogonal frequency division multiplexing (OFDM)-based wireless local area network (LAN) systems. In evaluations, the optimal relay location and power settings are found. The cooperative system with the proposed demodulators for the Golden and Alamouti codes offers 1.5 and 1.9 times larger areas where 10.8 and 5.4Mbit/s can be obtained than a non-cooperative (direct) system in a typical office environment, respectively.

  • Performance Analysis of Dynamic Range Limited DCO-OFDM, ACO-OFDM and Flip-OFDM Transmissions for Visible Light Communication

    Muhammad SOHAIL  Poompat SAENGUDOMLERT  Karel L. STERCKX  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:10
      Page(s):
    2192-2202

    This paper analyzes the transmission performances of visible light communication (VLC) based on unipolar orthogonal frequency division multiplexing (OFDM), which is compatible with intensity modulation and direct detection (IM/DD). Three existing unipolar OFDM schemes, namely DC biased optical OFDM (DCO-OFDM), asymmetrically clipped optical OFDM (ACO-OFDM), and flip-OFDM are investigated and compared. While these three schemes have been analyzed for indoor optical wireless communication (OWC) subject to the limitation on the transmit optical power, they have not been carefully investigated and compared for VLC when a large transmit power is available due to the illumination requirement, and the signal dynamic range (DR) becomes the main limitation. For the analysis, DR expressions of DCO-OFDM, ACO-OFDM, and flip-OFDM signals are first derived. Then, the bit error rate (BER) expression of each unipolar OFDM scheme is derived in terms of the DR. For data rates in the range of 1-10Mbps, under the system parameters based on typical indoor environments, DCO-OFDM is observed to outperform the other two schemes. This superiority of DCO-OFDM is in contrast with previously reported results that indicate the attractiveness of ACO-OFDM and flip-OFDM over DCO-OFDM when the transmit optical power is the main limitation. Finally, light dimming is considered to identify the illumination level below which DCO-OFDM loses this superiority.

  • Coherent Combining-Based Initial Ranging Scheme for MIMO-OFDMA Systems

    Yujie XIA  Guangliang REN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:10
      Page(s):
    2203-2211

    A coherent combining-based initial ranging scheme is proposed for multiple-input multiple-output and orthogonal frequency division multiple access systems. The proposed algorithm utilizes the correlation properties of the ranging codes to resolve the multipath components, coherently combines the initial ranging signal of resolved path on each receiving antenna to maximize the output signal-to-interference-and-noise ratio, and then collects the power of the multipath signals to detect the states of the ranging codes. Simulation results show that the proposed scheme has much better performance than the available noncoherent combining method, and can accommodate more active ranging users simultaneously in each cell.

  • Scalable Connection-Based Time Division Multiple Access Architecture for Wireless Network-on-Chip

    Shijun LIN  Zhaoshan LIU  Jianghong SHI  Xiaofang WU  

     
    BRIEF PAPER-Integrated Electronics

      Vol:
    E97-C No:9
      Page(s):
    918-921

    In this paper, we propose a scalable connection-based time division multiple access architecture for wireless NoC. In this architecture, only one-hop transmission is needed when a packet is transmitted from one wired subnet to another wired subnet, which improves the communication performance and cuts down the energy consumption. Furthermore, by carefully designing the central arbiter, the bandwidth of the wireless channel can be fully used. Simulation results show that compared with the traditional WCube wireless NoC architecture, the proposed architecture can greatly improve the network throughput, and cut down the transmission latency and energy consumption with a reasonable area overhead.

  • A Variable-Supply-Voltage 60-GHz PA with Consideration of HCI Issues for TDD Operation

    Rui WU  Yuuki TSUKUI  Ryo MINAMI  Kenichi OKADA  Akira MATSUZAWA  

     
    PAPER-Electronic Circuits

      Vol:
    E97-C No:8
      Page(s):
    803-812

    A 60-GHz power amplifier (PA) with a reliability consideration for a hot-carrier-induced~(HCI) degradation is presented. The supply voltage of the last stage of the PA ($V_{{ m PA}}$) is dynamically controlled by an on-chip digitally-assisted low drop-out voltage regulator (LDO) to alleviate HCI effects. A physical model for estimation of HCI degradation of NMOSFETs is discussed and investigated for dynamic operation. The PA is fabricated in a standard 65-nm CMOS process with a core area of 0.21,mm$^{2}$, which provides a saturation power of 10.1,dBm to 13.2,dBm with a peak power-added efficiency~(PAE) of 8.1% to 15.0% for the supply voltage $V_{{ m PA}}$ which varies from 0.7,V to 1.0,V at 60,GHz, respectively.

  • Petabit/s Optical Transmission Using Multicore Space-Division-Multiplexing Open Access

    Hidehiko TAKARA  Tetsuo TAKAHASHI  Kazuhide NAKAJIMA  Yutaka MIYAMOTO  

     
    INVITED PAPER

      Vol:
    E97-B No:7
      Page(s):
    1259-1264

    The paper presents ultra-high-capacity transmission technologies based on multi-core space-division-multiplexing. In order to realize high-capacity multi-core fiber (MCF) transmission, investigation of low crosstalk fiber and connection technology is important, and high-density signal generation using multilevel modulation and crosstalk management are also key technologies. 1Pb/s multi-core fiber transmission experiment using space-division-multiplexing is also described.

81-100hit(562hit)