The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] dual-mode(24hit)

1-20hit(24hit)

  • Theoretical and Experimental Analysis of the Spurious Modes and Quality Factors for Dual-Mode AlN Lamb-Wave Resonators

    Haiyan SUN  Xingyu WANG  Zheng ZHU  Jicong ZHAO  

     
    PAPER-Ultrasonic Electronics

      Pubricized:
    2022/08/10
      Vol:
    E106-C No:3
      Page(s):
    76-83

    In this paper, the spurious modes and quality-factor (Q) values of the one-port dual-mode AlN lamb-wave resonators at 500-1000 MHz were studied by theoretical analysis and experimental verification. Through finite element analysis, we found that optimizing the width of the lateral reflection boundary at both ends of the resonator to reach the quarter wavelength (λ/4), which can improve its spectral purity and shift its resonant frequency. The designed resonators were micro-fabricated by using lithography processes on a 6-inch wafer. The measured results show that the spurious mode can be converted and dissipated, splitting into several longitudinal modes by optimizing the width of the lateral reflection boundary, which are consistent well with the theoretical analysis. Similarly, optimizing the interdigital transducer (IDT) width and number of IDT fingers can also suppress the resonator's spurious modes. In addition, it is found that there is no significant difference in the Qs value for the two modes of the dual-mode resonator with the narrow anchor and full anchor. The acoustic wave leaked from the anchor into the substrate produces a small displacement, and the energy is limited in the resonator. Compared to the resonator with Au IDTs, the resonator with Al IDTs can achieve a higher Q value due to its lower thermo-elastic damping loss. The measured results show the optimized dual-mode lamb-wave resonator can obtain Qs value of 2946.3 and 2881.4 at 730.6 MHz and 859.5 MHz, Qp values of 632.5 and 1407.6, effective electromechanical coupling coefficient (k2eff) of 0.73% and 0.11% respectively, and has excellent spectral purity simultaneously.

  • A Compact Millimeter-Wave Dual-Band Bandpass Filter Using Substrate-Integrated Waveguide (SIW) Dual-Mode Cavities

    Kaida DONG  Jingyan MO  Yuhong HE  Zhewang MA  Xuexia YANG  

     
    PAPER

      Vol:
    E99-C No:7
      Page(s):
    761-765

    A compact millimeter-wave three-pole dual-band bandpass filter (BPF) by using substrate-integrated waveguide (SIW) dual-mode cavities is developed in this paper. The proposed filter consists of three SIW dual-mode cavities, in which the TE201 and TE102 modes are used to form two passbands. The center frequencies of the two passbands can be readily changed by varying the lengths and/or widths of the SIW cavities. Meanwhile three transmission zeros are produced with appropriate design of the input and output of the SIW cavities, which increase significantly the isolation between the two passbands and their roll-off rate of attenuations. The dual-band BPF filter is designed, fabricated and measured. The measured center frequencies of the two passbands are 26.75GHz and 31.55GHz, respectively. The 3dB-passbands are 26.35-27.15GHz (3%) and 31.29-31.81GHz (1.6%), respectively, with maximum insertion loss of 2.64dB and 4.2dB, respectively, and return loss larger than 12dB in both passbands. A good agreement between the simulated and measured filter characteristics is obtained.

  • High CM Suppression Wideband Balanced BPF Using Dual-Mode Slotline Resonator

    Lina BAI  Danna YING  

     
    PAPER-Measurement Technology

      Vol:
    E98-A No:10
      Page(s):
    2171-2177

    A novel high common-mode (CM) suppression wideband balanced passband filter (BPF) is proposed using the stub centrally loaded slotline resonators (SCLSR) which have two resonant frequencies (odd- and even-modes) in the desired passband. The odd-mode resonant frequency of the slotline SCLSR can be flexibly controlled by the stub, whereas the even-mode one is fixed. Meanwhile, a transmission zero near the odd-mode resonant frequency can be generated due to the main path signal counteraction. First, the wideband single-ended BPF and corresponding balanced BPF are designed based on the slotline SCLSR with the parallel coupled microstrip line input/output (I/O). Ultra wideband high CM suppression that can be achieved for the slotline resonator structure has no resonant mode under CM excitation. Furthermore, by folding the parallel coupled microstrip line I/O, the source-load coupling is effectively decoupled to improve the CM suppression within the passband. The high suppression wideband balanced BPF is fabricated and measured, respectively. Good agreement between simulation and measurement results is obtained.

  • Performance Evaluation and Link Budget Analysis on Dual-Mode Communication System in Body Area Networks

    Jingjing SHI  Yuki TAKAGI  Daisuke ANZAI  Jianqing WANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:6
      Page(s):
    1175-1183

    Wireless body area networks (BANs) are attracting great attention as a future technology of wireless networks for healthcare and medical applications. Wireless BANs can generally be divided into two categories, i.e., wearable BANs and implant BANs. However, the performance requirements and channel propagation characteristics of these two kinds of BANs are quite different from each other, that is, wireless signals are approximately transmitted along the human body as a surface wave in wearable BANs, on the other hand, the signals are transmitted through the human tissues in implant BANs. As an effective solution for this problem, this paper first introduces a dual-mode communication system, which is composed of transmitters for in-body and on-body communications and a receiver for both communications. Then, we evaluate the bit error rate (BER) performance of the dual-mode communication system via computer simulations based on realistic channel models, which can reasonably represent the propagation characteristics of on-body and in-body communications. Finally, we conduct a link budget analysis based on the derived BER performances and discuss the link parameters including system margin, maximum link distance, data rate and required transmit power. Our computer simulation results and analysis results demonstrate the feasibility of the dual-mode communication system in wireless BANs.

  • A Dual-Mode Deblocking Filter Design for HEVC and H.264/AVC

    Muchen LI  Jinjia ZHOU  Dajiang ZHOU  Xiao PENG  Satoshi GOTO  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1366-1375

    As the successive video compression standard of H.264/AVC, High Efficiency Video Codec (HEVC) will play an important role in video coding area. In the deblocking filter part, HEVC inherits the basic property of H.264/AVC and gives some new features. Based on this variation, this paper introduces a novel dual-mode deblocking filter architecture which could support both of the HEVC and H.264/AVC standards. For HEVC standard, the proposed symmetric unified-cross unit (SUCU) based filtering scheme greatly reduces the design complexity. As a result, processing a 1616 block needs 24 clock cycles. For H.264/AVC standard, it takes 48 clock cycles for a 1616 macro-block (MB). In synthesis result, the proposed architecture occupies 41.6k equivalent gate count at frequency of 200 MHz in SMIC 65 nm library, which could satisfy the throughput requirement of super hi-vision (SHV) on 60 fps. With filter reusing scheme, the universal design for the two standards saves 30% gate counts than the dedicated ones in filter part. In addition, the total power consumption could be reduced by 57.2% with skipping mode when the edges need not be filtered.

  • A Fractional-N PLL with Dual-Mode Detector and Counter

    Fitzgerald Sungkyung PARK  Nikolaus KLEMMER  

     
    BRIEF PAPER-Integrated Electronics

      Vol:
    E95-C No:12
      Page(s):
    1887-1890

    A fractional-N phase-locked loop (PLL) is designed for the DigRF interface. The digital part of the PLL mainly consists of a dual-mode phase frequency detector (PFD), a digital counter, and a digital delta-sigma modulator (DSM). The PFD can operate on either 52 MHz or 26 MHz reference frequencies, depending on its use of only the rising edge or both the rising and the falling edges of the reference clock. The interface between the counter and the DSM is designed to give enough timing margin in terms of the signal round-trip delay. The circuitry is implemented using a 90-nm CMOS process technology with a 1.2-V supply, draining 1 mA.

  • A Dual Mode BPF with Improved Spurious Response Using DGS Cells Embedded on the Ground Plane of CPW

    Min-Hang WENG  Chang-Sin YE  Cheng-Yuan HUNG  Chun-Yueh HUANG  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E91-C No:2
      Page(s):
    224-227

    A novel dual mode bandpass filter (BPF) with improved spurious response is presented in this letter. To obtain low insertion loss, the coupling structure using the dual mode resonator and the feeding scheme using coplanar-waveguide (CPW) are constructed on the two sides of a dielectric substrate. A defected ground structure (DGS) is designed on the ground plane of the CPW to achieve the goal of spurious suppression of the filter. The filter has been investigated numerically and experimentally. Measured results show a good agreement with the simulated analysis.

  • A Dual-Mode Bluetooth Transceiver with a Two-Point-Modulated Polar-Loop Transmitter and a Frequency-Offset-Compensated Receiver

    Takashi OSHIMA  Masaru KOKUBO  

     
    PAPER-Circuit Theory

      Vol:
    E90-A No:8
      Page(s):
    1669-1678

    An entire dual-mode transceiver capable of both the conventional GFSK-modulated Bluetooth and the Medium-Rate π/4-DQPSK-modulated Bluetooth has been investigated and reported. The transmitter introduces a novel two-point-modulated polar-loop technique without the global feedback to realize reduced power consumption, small chip area and also high modulation accuracy. The receiver shares all the circuits for both operating modes except the demodulators and also features a newly-proposed cancellation technique of the carrier-frequency offset. The transceiver has been confirmed by system or circuit simulations to meet all the dual-mode Bluetooth specifications. The simulation results show that the transmitting power can be larger than 10 dBm while achieving the total power efficiency above 30% and also RMS DEVM of 0.050. It was also confirmed by simulation that the receiver is expected to attain the sensitivity of -85 dBm in both modes while satisfying the image-rejection and the blocker-suppression specifications. The proposed transceiver will provide a low-cost, low-power single-chip RF-IC solution for the next-generation Bluetooth communication.

  • Novel Compact Microstrip Dual-Mode Ring Resonator Wideband Bandpass Filter with Significantly Improved Stopband Property

    Peng CAI  Zhewang MA  Xuehui GUAN  Yoshio KOBAYASHI  Tetsuo ANADA  

     
    PAPER-Passive Circuits/Components

      Vol:
    E89-C No:12
      Page(s):
    1858-1864

    A novel wideband bandpass filter with improved stopband characteristics is presented in this paper. Dual-mode square ring resonator is used in the proposed filter. New formulas based on the even- and odd-mode analysis are derived to facilitate the design of transmission zeros of the square ring resonator. A short-circuited stub and a piece of aperture-enhanced parallel-coupled lines are introduced to the input and output of the resonator to lower the passband return loss and widen the stopband of the filter significantly. The filter has a 50% fractional bandwidth, is compact in configuration, and shows remarkably improved performance compared with previously reported filters of the same kind. The measured filtering response shows a good agreement with the simulated result.

  • Improved Stopband of the Dual-Mode Ring Bandpass Filter Using Periodic Complementary Spilt-Ring Resonators

    Hung-Wei WU  Min-Hang WENG  Yan-Kuin SU  Cheng-Yuan HUNG  Ru-Yuan YANG  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E89-C No:8
      Page(s):
    1255-1258

    This investigation proposes a modified equivalent circuit of single complementary split-ring resonator (CSRR) in planar transmission media and a dual-mode ring bandpass filter (BPF) that uses periodic CSRRs to suppress the spurious response. The proposed modified equivalent circuit consists of lumped elements that can be easily extracted from the measured S parameters. The proposed dual-mode ring BPF has exhibits a wide stopband characteristic owing to the bandgap resonant characteristic of CSRRs in the harmonic frequency of the dual-mode ring BPF. Good agreement with EM simulation and measurement is demonstrated.

  • Dual-Mode Bandpass Filters Using Microstrip Slotted Equilateral Triangular Patch Resonators

    Weiliang HU  Zhewang MA  Yoshio KOBAYASHI  Tetsuo ANADA  Gen HAGIWARA  

     
    PAPER

      Vol:
    E89-C No:4
      Page(s):
    503-508

    Two compact and low loss dual-mode filters are proposed by using degenerate modes of slotted triangular microstrip patch resonators. The geometrical size and radiation loss of the triangular patch are reduced simultaneously by loading both horizontal and vertical slots. The resonant frequencies of two degenerate modes can be easily controlled by varying the dimensions and positions of the slots. A two-pole dual-mode filter operating at 3.94 GHz with a fractional bandwidth of 4.3% is designed, fabricated, and measured. The measured results verify well the theoretical predictions.

  • Microstrip Dual-Mode Bandpass Filter with Ultra-Broad Stopband Using Aperture-Backed Stepped-Impedance Ring Resonator

    Hang WANG  Lei ZHU  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:11
      Page(s):
    2166-2168

    A novel microstrip dual-mode bandpass filter with ultra-broad stopband is proposed using the aperture-backed stepped-impedance ring resonator (SIRR). This SIRR consists of low-impedance strips in the four bended corners and high-impedance strips in the four straight sides. With the cross-shaped aperture placed on the ground underneath the SIRR, the upper stopband is significantly broadened. In particular, the 2nd resonant frequency of this proposed SIRR is confirmed to exceed the four times of its 1st counterpart. The dual-mode filter with the passband of 7.5% at 1.59 GHz is then designed and implemented, demonstrating the measured stopband of 1.70-5.80 GHz and size reduction of 56.0%.

  • Novel Dual-Mode Circular Patch Bandpass Filter with Enhanced Stopband Performance

    Min-Hung WENG  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:9
      Page(s):
    1872-1879

    This investigation proposed a novel dual-mode circular patch bandpass filter (BPF) with enhanced stopband performance. The novelty of the proposed structure is to use a pair of square etched areas acting as a perturbation element on the circular patch resonator such that two split modes are coupled and the filter structure can be reduced. The coupling coefficients of two split modes are obtained. To improve the stopband performance, a pairs of H-shaped defected ground structure (DGS) cells are used below the input/output port to suppress the spurious response of the proposed BPF. The equivalent circuit of the DGS cell is discussed and the relations between bandstop characteristic and the suitable DGS dimensions are also investigated. The proposed BPF is demonstrated with a central frequency fo = 2.2 GHz, a 3-dB fractional bandwidth of 8% and a wider stopband of -35 dB from 2.5 to 6 GHz. Measured results of experimental filter have good agreement with the theoretical simulated results.

  • A CMOS Dual-Mode RF Front-End Receiver for GSM and WCDMA Applications

    Chun-Lin KO  Ming-Ching KUO  Chien-Nan KUO  

     
    PAPER-RF

      Vol:
    E88-C No:6
      Page(s):
    1218-1224

    A dual-mode, triple-band RF front-end receiver for GSM900, DCS1800 and WCDMA is presented in this paper. This chip uses low-IF and zero-IF receiver architectures for GSM and WCDMA respectively to fulfill the entirely different system requirements of the two standards. It consists of three parallel LNAs and down-conversion mixers with on-chip LO I/Q generations. The receiver front-end is implemented in a standard 0.25 µm CMOS process and consumes about 30-mA from a 2.7-V power supply for all modes. The measured double-side band noise figure and voltage gain are 3 dB, 36 dB for the GSM900, 5.9 dB, 31 dB for the DCS1800, and 4.3 dB, 29.6 dB for the WCDMA, respectively.

  • A Novel Compact Dual-Band Bandpass Filter Using Dual-Mode Resonators

    Min-Hung WENG  Cheng-Yuan HUNG  Hung-Wei WU  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:1
      Page(s):
    146-148

    The paper reports a compact and high performance dual-band bandpass filter (BPF) using two types of dual-mode resonators. The dual mode cross shaped resonator and the three dual mode ring resonators in the designed dual-band BPF are excited to control the first and second passband, respectively. It is shown that the designed and fabricated dual-band BPF has narrow bandwidths and very sharp attenuation rate due to the existence of the transmission zeros. The frequency response of the designed dual-band BPF shows good agreement between the simulations and experiments.

  • Fabrication of an X-Band Dual Mode Bandpass Filter Using Low Cost FR4 Substrate

    Min-Hung WENG  Cheng-Yuan HUNG  Hung-Wei WU  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:1
      Page(s):
    143-145

    The investigation presents a low cost and low insertion loss X-band dual mode bandpass filter (BPF) based on inexpensive commercial FR4 substrate. The proposed filter at a central frequency f0 of 11.3 GHz has high filter performance filter with a fractional bandwidth of 14%, the insertion loss of -2.7 dB, and two transmission zeros. The designed procedures are presented in this letter and the fabricated filter verifies the proposed designed concept.

  • Dual-Mode Ring Bandpass Filter Using Defected Ground Structure with a Wider Stopband

    Ru Yuan YANG  Min Hung WENG  Hung Wei WU  Tsung Hui HUANG  Han-Ding HSUEH  Mau-Phon HOUNG  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E87-C No:12
      Page(s):
    2150-2157

    This paper proposes a novel dual-mode ring bandpass filter (BPF) using defect ground structure (DGS). The proposed filter provides wide stopband characteristic resulted from the bandgap characteristic of DGS for suppressing spurious response of the dual-mode ring BPF. The H shaped DGS cell is modeled as a parallel LC resonator and the equivalent circuit parameters are extracted. The relationship between bandgap characteristic and design parameters of DGS dimension is discussed and the bandgap characteristic of DGS on the filter performance is also investigated. The novel proposed filter has the frequency characteristics with a central frequency f0 = 7.7 GHz, a 3-dB bandwidth of 4.5% and wider stopband from 9 to 15.5 GHz at the level of -35 GHz. Measured results of experimental filter has good agreement with the theoretical simulation results.

  • High Spurious Suppression of the Dual-Mode Patch Bandpass Filter Using Defected Ground Structure

    Min Hung WENG  Hung Wei WU  Ru Yuan YANG  Tsung Hui HUANG  Mau-Phon HOUNG  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E87-C No:10
      Page(s):
    1738-1740

    This investigation proposes a novel dual-mode patch bandpass filter (BPF) that uses defect ground structure (DGS) to suppress spurious response. The proposed dual-mode patch BPF has exhibits a wide stopband characteristic owing to that uses the bandgap resonant characteristic of DGS in the harmonic frequency of the dual-mode patch BPF. The novel proposed filter demonstrates the frequency characteristics with center frequency f0 = 2.2 GHz, 3-dB bandwidth (FBW) of 8% and wider stopband from 2.6 to 6 GHz at the level of -35 dB. The experimental and simulated results agree.

  • Novel Channel-Selection Scheme of Dense Wavelength Division Multiplexed Millimeter-Wave-Band Radio-on-Fiber Signals with Optical Heterodyne Detection

    Toshiaki KURI  Ken-ichi KITAYAMA  

     
    PAPER-Photonic Links for Wireless Communications

      Vol:
    E86-C No:7
      Page(s):
    1146-1152

    The dense wavelength division multiplexing (DWDM) technique is very attractive for effectively increasing the channel capability, even for access networks. Some DWDM radio-on-fiber (ROF) systems have been studied recently. In those systems, fiber Bragg gratings (FBG) or arrayed waveguide gratings (AWG) were used to demultiplex DWDM ROF signals. In this report, an alternative channel-selection scheme of DWDM millimeter-wave-band ROF signals by optical heterodyne detection with dual-mode local light is newly proposed. Error-free demultiplexing and transmission over a 25-km-long SMF of the DWDM signal, which consists of two 60-GHz-band, 155-Mb/s-DPSK ROF signals, are demonstrated.

  • Generation of 60 GHz Dual-Mode Optical BPSK Signal Pair for Crosstalk-Free QPSK Photodetection by Optical Modulation Scheme with Double RF Inputs and Suppressed Carrier Feature

    Shinji NAKADAI  Kaoru HIGUMA  Satoshi OIKAWA  Masato KISHI  Masahiro TSUCHIYA  

     
    PAPER-Signal Generation and Processing Based on MWP Techniques

      Vol:
    E86-C No:7
      Page(s):
    1245-1250

    A novel optical modulation scheme is proposed for synthesizing a pair of dual-mode optical BPSK signals with an orthogonal phase relationship via a LiNbO3 Mach-Zehnder modulator (MZM) with dual RF signal inputs and a carrier suppression feature, which enables the generation of a crosstalk-free QPSK signal at the photodetection stage. With this method, one can compensate the drawback, that is bandwidth broadening, in our previously proposed method where a dual-mode optical QPSK signal is generated on the basis of narrow-angle modulated QPSK signal injection into a double-sideband suppressed carrier MZM device. We have carried out experiments for 60 GHz performance demonstration of this QPSK signal generation mechanism, and the results indicate the effectiveness of the present scheme.

1-20hit(24hit)