The search functionality is under construction.

Keyword Search Result

[Keyword] equality(47hit)

1-20hit(47hit)

  • Output Feedback Ultimate Boundedness Control with Decentralized Event-Triggering Open Access

    Koichi KITAMURA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Pubricized:
    2023/11/10
      Vol:
    E107-A No:5
      Page(s):
    770-778

    In cyber-physical systems (CPSs) that interact between physical and information components, there are many sensors that are connected through a communication network. In such cases, the reduction of communication costs is important. Event-triggered control that the control input is updated only when the measured value is widely changed is well known as one of the control methods of CPSs. In this paper, we propose a design method of output feedback controllers with decentralized event-triggering mechanisms, where the notion of uniformly ultimate boundedness is utilized as a control specification. Using this notion, we can guarantee that the state stays within a certain set containing the origin after a certain time, which depends on the initial state. As a result, the number of times that the event occurs can be decreased. First, the design problem is formulated. Next, this problem is reduced to a BMI (bilinear matrix inequality) optimization problem, which can be solved by solving multiple LMI (linear matrix inequality) optimization problems. Finally, the effectiveness of the proposed method is presented by a numerical example.

  • Meta-Bound on Lower Bounds of Bayes Risk in Parameter Estimation

    Shota SAITO  

     
    PAPER-Estimation

      Pubricized:
    2023/08/09
      Vol:
    E107-A No:3
      Page(s):
    503-509

    Information-theoretic lower bounds of the Bayes risk have been investigated for a problem of parameter estimation in a Bayesian setting. Previous studies have proven the lower bound of the Bayes risk in a different manner and characterized the lower bound via different quantities such as mutual information, Sibson's α-mutual information, f-divergence, and Csiszár's f-informativity. In this paper, we introduce an inequality called a “meta-bound for lower bounds of the Bayes risk” and show that the previous results can be derived from this inequality.

  • More Efficient Adaptively Secure Lattice-Based IBE with Equality Test in the Standard Model

    Kyoichi ASANO  Keita EMURA  Atsushi TAKAYASU  

     
    PAPER

      Pubricized:
    2023/10/05
      Vol:
    E107-A No:3
      Page(s):
    248-259

    Identity-based encryption with equality test (IBEET) is a variant of identity-based encryption (IBE), in which any user with trapdoors can check whether two ciphertexts are encryption of the same plaintext. Although several lattice-based IBEET schemes have been proposed, they have drawbacks in either security or efficiency. Specifically, most IBEET schemes only satisfy selective security, while public keys of adaptively secure schemes in the standard model consist of matrices whose numbers are linear in the security parameter. In other words, known lattice-based IBEET schemes perform poorly compared to the state-of-the-art lattice-based IBE schemes (without equality test). In this paper, we propose a semi-generic construction of CCA-secure lattice-based IBEET from a certain class of lattice-based IBE schemes. As a result, we obtain the first lattice-based IBEET schemes with adaptive security and CCA security in the standard model without sacrificing efficiency. This is because, our semi-generic construction can use several state-of-the-art lattice-based IBE schemes as underlying schemes, e.g. Yamada's IBE scheme (CRYPTO'17).

  • A Generic Construction of CCA-Secure Identity-Based Encryption with Equality Test against Insider Attacks

    Keita EMURA  Atsushi TAKAYASU  

     
    PAPER

      Pubricized:
    2022/05/30
      Vol:
    E106-A No:3
      Page(s):
    193-202

    Identity-based encryption with equality test (IBEET) is a generalization of the traditional identity-based encryption (IBE) and public key searchable encryption, where trapdoors enable users to check whether two ciphertexts of distinct identities are encryptions of the same plaintext. By definition, IBEET cannot achieve indistinguishability security against insiders, i.e., users who have trapdoors. To address this issue, IBEET against insider attacks (IBEETIA) was later introduced as a dual primitive. While all users of IBEETIA are able to check whether two ciphertexts are encryptions of the same plaintext, only users who have tokens are able to encrypt plaintexts. Hence, IBEETIA is able to achieve indistinguishability security. On the other hand, the definition of IBEETIA weakens the notion of IBE due to its encryption inability. Nevertheless, known schemes of IBEETIA made use of rich algebraic structures such as bilinear groups and lattices. In this paper, we propose a generic construction of IBEETIA without resorting to rich algebraic structures. In particular, the only building blocks of the proposed construction are symmetric key encryption and pseudo-random permutations in the standard model. If a symmetric key encryption scheme satisfies CCA security, our proposed IBEETIA scheme also satisfies CCA security.

  • LMI-Based Design of Output Feedback Controllers with Decentralized Event-Triggering

    Koichi KITAMURA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Pubricized:
    2021/09/15
      Vol:
    E105-A No:5
      Page(s):
    816-822

    In this paper, event-triggered control over a sensor network is studied as one of the control methods of cyber-physical systems. Event-triggered control is a method that communications occur only when the measured value is widely changed. In the proposed method, by solving an LMI (Linear Matrix Inequality) feasibility problem, an event-triggered output feedback controller such that the closed-loop system is asymptotically stable is derived. First, the problem formulation is given. Next, the control problem is reduced to an LMI feasibility problem. Finally, the proposed method is demonstrated by a numerical example.

  • On Aggregating Two Metrics with Relaxed Triangle Inequalities by the Weighted Harmonic Mean

    Toshiya ITOH  Yoshinori TAKEI  

     
    PAPER

      Vol:
    E101-A No:9
      Page(s):
    1404-1411

    An important problem in mathematics and data science, given two or more metric spaces, is obtaining a metric of the product space by aggregating the source metrics using a multivariate function. In 1981, Borsík and Doboš solved the problem, and much progress has subsequently been made in generalizations of the problem. The triangle inequality is a key property for a bivariate function to be a metric. In the metric aggregation, requesting the triangle inequality of the resulting metric imposes the subadditivity on the aggregating function. However, in some applications, such as the image matching, a relaxed notion of the triangle inequality is useful and this relaxation may enlarge the scope of the aggregators to include some natural superadditive functions such as the harmonic mean. This paper examines the aggregation of two semimetrics (i.e. metrics with a relaxed triangle inequality) by the harmonic mean is studied and shows that such aggregation weakly preserves the relaxed triangle inequalities. As an application, the paper presents an alternative simple proof of the relaxed triangle inequality satisfied by the robust Jaccard-Tanimoto set dissimilarity, which was originally shown by Gragera and Suppakitpaisarn in 2016.

  • Quantized Event-Triggered Control of Discrete-Time Linear Systems with Switching Triggering Conditions

    Shumpei YOSHIKAWA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Vol:
    E101-A No:2
      Page(s):
    322-327

    Event-triggered control is a method that the control input is updated only when a certain triggering condition is satisfied. In networked control systems, quantization errors via A/D conversion should be considered. In this paper, a new method for quantized event-triggered control with switching triggering conditions is proposed. For a discrete-time linear system, we consider the problem of finding a state-feedback controller such that the closed-loop system is uniformly ultimately bounded in a certain ellipsoid. This problem is reduced to an LMI (Linear Matrix Inequality) optimization problem. The volume of the ellipsoid may be adjusted. The effectiveness of the proposed method is presented by a numerical example.

  • Radar Modulation Identification Using Inequality Measurement in Frequency Domain

    Kyung-Jin YOU  Ha-Eun JEON  Hyun-Chool SHIN  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:4
      Page(s):
    975-981

    In this paper, we proposed a method for radar modulation identification based on the measurement of inequality in the frequency domain. Gini's coefficient was used to exploit the inequality in the powers of spectral components. The maximum likelihood classifier was used to classify the detected radar signal into four types of modulations: unmodulated signal (UM), linear frequency modulation (LFM), non-linear frequency modulation (NLFM), and frequency shift keying (FSK). The simulation results demonstrated that the proposed method achieves an overall identification accuracy of 98.61% at a signal-to-noise ratio (SNR) of -6dB without a priori information such as carrier frequency, pulse arrival times or pulse width.

  • Linear Quadratic Regulator with Decentralized Event-Triggering

    Kyohei NAKAJIMA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Vol:
    E100-A No:2
      Page(s):
    414-420

    Event-triggered control is a control method that the measured signal is sent to the controller only when a certain triggering condition on the measured signal is satisfied. In this paper, we propose a linear quadratic regulator (LQR) with decentralized triggering conditions. First, a suboptimal solution to the design problem of LQRs with decentralized triggering conditions is derived. A state-feedback gain can be obtained by solving a convex optimization problem with LMI (linear matrix inequality) constraints. Next, the relation between centralized and decentralized triggering conditions is discussed. It is shown that control performance of an LQR with decentralized event-triggering is better than that with centralized event-triggering. Finally, a numerical example is illustrated.

  • Inequality-Constrained RPCA for Shadow Removal and Foreground Detection

    Hang LI  Yafei ZHANG  Jiabao WANG  Yulong XU  Yang LI  Zhisong PAN  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2015/03/02
      Vol:
    E98-D No:6
      Page(s):
    1256-1259

    State-of-the-art background subtraction and foreground detection methods still face a variety of challenges, including illumination changes, camouflage, dynamic backgrounds, shadows, intermittent object motion. Detection of foreground elements via the robust principal component analysis (RPCA) method and its extensions based on low-rank and sparse structures have been conducted to achieve good performance in many scenes of the datasets, such as Changedetection.net (CDnet); however, the conventional RPCA method does not handle shadows well. To address this issue, we propose an approach that considers observed video data as the sum of three parts, namely a row-rank background, sparse moving objects and moving shadows. Next, we cast inequality constraints on the basic RPCA model and use an alternating direction method of multipliers framework combined with Rockafeller multipliers to derive a closed-form solution of the shadow matrix sub-problem. Our experiments have demonstrated that our method works effectively on challenging datasets that contain shadows.

  • Optimal Threshold Configuration Methods for Flow Admission Control with Cooperative Users

    Sumiko MIYATA  Katsunori YAMAOKA  Hirotsugu KINOSHITA  

     
    PAPER-Network

      Vol:
    E97-B No:12
      Page(s):
    2706-2719

    We have proposed a novel call admission control (CAC) method for maximizing total user satisfaction in a heterogeneous traffic network and showed their effectiveness by using the optimal threshold from numerical analysis [1],[2]. With these CAC methods, it is assumed that only selfish users exist in a network. However, we need to consider the possibility that some cooperative users exist who would agree to reduce their requested bandwidth to improve another user's Quality of Service (QoS). Under this assumption, conventional CAC may not be optimal. If there are cooperative users in the network, we need control methods that encourage such user cooperation. However, such “encourage” control methods have not yet been proposed. Therefore, in this paper, we propose novel CAC methods for cooperative users by using queueing theory. Numerical analyses show their effectiveness. We also analyze the characteristics of the optimal control parameter of the threshold.

  • Stability Analysis and Fuzzy Control for Markovian Jump Nonlinear Systems with Partially Unknown Transition Probabilities

    Min Kook SONG  Jin Bae PARK  Young Hoon JOO  

     
    PAPER-Systems and Control

      Vol:
    E97-A No:2
      Page(s):
    587-596

    This paper is concerned with exploring an extended approach for the stability analysis and synthesis for Markovian jump nonlinear systems (MJNLSs) via fuzzy control. The Takagi-Sugeno (T-S) fuzzy model is employed to represent the MJNLSs with incomplete transition description. In this paper, not all the elements of the rate transition matrices (RTMs), or probability transition matrices (PTMs) are assumed to be known. By fully considering the properties of the RTMs and PTMs, sufficient criteria of stability and stabilization is obtained in both continuous and discrete-time. Stabilization conditions with a mode-dependent fuzzy controller are derived for Markovian jump fuzzy systems in terms of linear matrix inequalities (LMIs), which can be readily solved by using existing LMI optimization techniques. Finally, illustrative numerical examples are provided to demonstrate the effectiveness of the proposed approach.

  • On Global Exponential Stabilization of a Class of Nonlinear Systems by Output Feedback via Matrix Inequality Approach

    Min-Sung KOO  Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Vol:
    E96-A No:10
      Page(s):
    2034-2038

    In this letter, we consider the global exponential stabilization problem by output feedback for a class of nonlinear systems. Along with a newly proposed matrix inequality condition, the proposed control method has improved flexibility in dealing with nonlinearity, over the existing methods. Analysis and examples are given to illustrate the improved features of our control method.

  • A Method for Improving TIE-Based VQ Encoding Introducing RI Rules

    Chi-Jung HUANG  Shaw-Hwa HWANG  Cheng-Yu YEH  

     
    LETTER-Pattern Recognition

      Vol:
    E96-D No:1
      Page(s):
    151-154

    This study proposes an improvement to the Triangular Inequality Elimination (TIE) algorithm for vector quantization (VQ). The proposed approach uses recursive and intersection (RI) rules to compensate and enhance the TIE algorithm. The recursive rule changes reference codewords dynamically and produces the smallest candidate group. The intersection rule removes redundant codewords from these candidate groups. The RI-TIE approach avoids over-reliance on the continuity of the input signal. This study tests the contribution of the RI rules using the VQ-based, G.729 standard LSP encoder and some classic images. Results show that the RI rules perform excellently in the TIE algorithm.

  • Equality Based Flow-Admission Control by Using Mixed Loss and Delay System

    Sumiko MIYATA  Katsunori YAMAOKA  

     
    PAPER-Network System

      Vol:
    E95-B No:3
      Page(s):
    832-844

    We have proposed a novel call admission control (CAC) for maximizing total user satisfaction in a heterogeneous traffic network and showed the effectiveness of our CAC by using an optimal threshold from numerical analysis [1]. In our previous CAC, when a new broadband flow arrives and the total accommodated bandwidth is more than or equal to the threshold, the arriving new broadband flow is rejected. In actual networks, however, users may agree to wait for a certain period until the broadband flow, such as video, begins to play. In this paper, when total accommodated bandwidth is more than or equal to the threshold, arriving broadband flows wait instead of being rejected. As a result, we can greatly improve total user satisfaction.

  • Comparing Process Behaviors with Finite Chu Spaces

    Xutao DU  Chunxiao XING  Lizhu ZHOU  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E94-D No:6
      Page(s):
    1321-1324

    We develop a distance function for finite Chu spaces based on their behavior. Typical examples are given to show the coincidence between the distance function and intuition. We show by example that the triangle inequality should not be satisfied when it comes to comparing two processes.

  • Flow-Admission Control Based on Equality of Heterogeneous Traffic (Two-Type Flow Model)

    Sumiko MIYATA  Katsunori YAMAOKA  

     
    PAPER-Network System

      Vol:
    E93-B No:12
      Page(s):
    3564-3576

    Multimedia applications such as video and audio have recently come into much wider use. Because this heterogeneous traffic consumes most of the network's resources, call admission control (CAC) is required to maintain high-quality services. User satisfaction depends on CAC's success in accommodating application flows. Conventional CACs do not take into consideration user satisfaction because their main purpose is to improve the utilization of resources. Moreover, if we assume a service where an ISP provides a "flat-based charging," each user may receive same user satisfaction as a result of users being accommodated in a network, even if each has a different bandwidth. Therefore, we propose a novel CAC to maximize total user satisfaction based on a new philosophy where heterog eneous traffic is treated equally in networks. Theoretical analysis is used to derive optimal thresholds for various traffic configurations with a full search system. We also carried out theoretical numerical analysis to demonstrate the effectiveness of our new CAC. Moreover, we propose a sub-optimal threshold configuration obtained by using an approximation formula to develop practical CAC from these observations. We tested and confirmed that performance could be improved by using sub-optimal parameters.

  • On Stability of Linear Time-Delay Systems with Multiple Time-Varying Delays

    Gwang-Seok PARK  Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Vol:
    E93-A No:7
      Page(s):
    1384-1387

    In this letter, delay-dependent stability criterion for linear time-delay systems with multiple time varying delays is proposed by employing the Lyapunov-Krasovskii functional approach and integral inequality. By the N-segmentation of delay length, we obtain less conservative results on the delay bounds which guarantee the asymptotic stability of the linear time-delay systems with multiple time varying delays. Simulation results show that the proposed stability criteria are less conservative than several other existing criteria.

  • Adaptive Tracker Design with Identifier for Pendulum System by Conditional LMI Method and IROA

    Jiing-Dong HWANG  Zhi-Ren TSAI  

     
    PAPER-Systems and Control

      Vol:
    E92-A No:9
      Page(s):
    2266-2274

    This paper proposes a robust adaptive fuzzy PID control scheme augmented with a supervisory controller for unknown systems. In this scheme, a generalized fuzzy model is used to describe a class of unknown systems. The control strategy allows each part of the control law, i.e., a supervisory controller, a compensator, and an adaptive fuzzy PID controller, to be designed incrementally according to different guidelines. The supervisory controller in the outer loop aims at enhancing system robustness in the face of extra disturbances, variation in system parameters, and parameter drift in the adaptation law. Furthermore, an H∞ control design method using the fuzzy Lyapunov function is presented for the design of the initial control gains that guarantees transient performance at the start of closed-loop control, which is generally overlooked in many adaptive control systems. This design of the initial control gains is a compound search strategy called conditional linear matrix inequality (CLMI) approach with IROA (Improved random optimal algorithm), it leads to less complex designs than a standard LMI method by fuzzy Lyapunov function. Numerical studies of the tracking control of an uncertain inverted pendulum system demonstrate the effectiveness of the control strategy. From results of this simulation, the generalized fuzzy model reduces the rule number of T-S fuzzy model indeed.

  • From Bell Inequalities to Tsirelson's Theorem

    David AVIS  Sonoko MORIYAMA  Masaki OWARI  

     
    INVITED PAPER

      Vol:
    E92-A No:5
      Page(s):
    1254-1267

    The first part of this paper contains an introduction to Bell inequalities and Tsirelson's theorem for the non-specialist. The next part gives an explicit optimum construction for the "hard" part of Tsirelson's theorem. In the final part we describe how upper bounds on the maximal quantum violation of Bell inequalities can be obtained by an extension of Tsirelson's theorem, and survey very recent results on how exact bounds may be obtained by solving an infinite series of semidefinite programs.

1-20hit(47hit)