The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] error(1060hit)

701-720hit(1060hit)

  • Performance of Closed-Loop Transmit Antenna Diversity with Channel Estimation Errors and Feedback Delay

    Nam-Soo KIM  Ye Hoon LEE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E87-B No:11
      Page(s):
    3289-3294

    The effect of feedback delay and channel estimation error on closed-loop transmit diversity (CTD) systems is investigated in time-selective Rayleigh fading channels. Based on a minimum mean square error (MMSE) channel estimator, the variance of the estimation error is formulated in terms of fading index and the number of transmit antennas. A bit error rate (BER) expression for the CTD system is analytically derived as a function of channel estimation error, feedback delay, and fading index. It is shown that the BER performance of the CTD system improves as the length of training symbols increases and/or the frame length decreases. In the CTD system, more accurate channel estimation scheme is required to achieve its full gain as the number of employed transmit antennas increases. It is also found that the CTD system is applicable to the slowly moving channel environments, such as pedestrians, but not for fast moving vehicles.

  • A Novel Prefilter-Type Beamformer Robust to Directional Error

    Sung-Soo HWANG  Yong-Hwan LEE  

     
    LETTER-Antennas and Propagation

      Vol:
    E87-B No:11
      Page(s):
    3389-3391

    Some conventional beamformers require the direction of the desired signal. The performance of such beamformers can substantially be degraded even in the presence of small error on the directional information. In this letter, we propose a prefilter-type beamforming scheme robust to directional error by employing a simple compensator. The performance of the proposed scheme is verified by computer simulation.

  • A Study on Importance Sampling for Turbo Codes

    Takakazu SAKAI  Koji SHIBATA  

     
    PAPER-Coding Theory

      Vol:
    E87-A No:10
      Page(s):
    2503-2511

    Parallel concatenated convolutional codes, turbo codes, are very attractive scheme at a point of view of an error probability performance. An bit error rate (BER) evaluation for turbo codes is done by a uniform interleaver bound calculation and/or a computer simulation. The former is calculated under the assumption of uniform interleaver, and is only effective for an BER evaluation with a pseudo random interleaver. The latter dose not have any interleaver restrictions. However, for a very low BER evaluation, it takes enormous simulation time. In this paper, a new error probability evaluation method for turbo codes is proposed. It is based on the error event simulation method. For each evaluation for the predetermined error sequence, importance sampling, which is one of the fast simulation methods, is applied. To prove the effectiveness of the proposed method, numerical examples are shown. The proposed method well approximates the BER at the error floor region. Under the same accuracy, the IS estimation time at BER = 10-7 is reduced to 1/6358 of the ordinary Monte-Carlo simulation time.

  • Bit Error Rate Calculation for Multi-User Coherent Chaos-Shift-Keying Communication Systems

    Ji YAO  Anthony J. LAWRANCE  

     
    PAPER

      Vol:
    E87-A No:9
      Page(s):
    2280-2291

    Analytical derivation of bit error rates for multi-user coherent chaos-shift-keying (CSK) communication systems are presented in this paper. Nearly exact results are obtained by applying the central limit theorem of statistics to sums of independent variables. Based on χ2 distribution approximations, more viable but still very accurate results decrease complexity of the calculations. The χ2 approach is compared with the widely used Gaussian approximation approach to show its superiority in most cases. Bit error performance bounds for the multi-user CSK system from the approach are deduced as further contributions of this paper. The theoretical results obtained are entirely consistent with a range of simulations.

  • Performance Analysis of the Wavelet-Based Generalized Sidelobe Canceller in the Presence of Random Steering Errors

    Yi CHU  

     
    PAPER-Antennas and Propagation

      Vol:
    E87-B No:9
      Page(s):
    2783-2790

    In this paper, we examine the effect of random steering errors on the signal-to-interference-plus-noise-ratio (SINR) at the output of the recently addressed wavelet-based generalized sidelobe canceller (GSC). This new beamformer employs a set of P-regular M-band wavelet bases for the design of the blocking matrix of the GSC. We first carry out a general expression of the output SINR of the GSC with multiple interferers present. With this expression, we then examine the analysis of wavelet-based GSC by expressing the SINR in terms of parameters such as the regularity of wavelet filters, the number of bands of wavelet filters, the length of adaptive weights, and the input signal-to-noise ratio (SNR). Some simulation results verify the analytically predicted performance.

  • A Prototype Modem with the Capability of Unequal Error Protection Developed for ETS-VIII Experiments

    Huan-Bang LI  Mitsugu OHKAWA  Nobufumi SARUWATARI  Noriyuki KARIYA  

     
    PAPER

      Vol:
    E87-B No:8
      Page(s):
    2090-2098

    A prototype modem with unequal error protection (UEP) capability was developed using multiple block coded modulation (MBCM). Benefited from its unique structure, MBCM can be used to provide UEP straightforward. We propose a new method to increase the robustness of the carrier recovery process by taking advantage of the MBCM code structure. We also use a frame format to facilitate the synchronization operation. This modem was developed in preparation for the mobile satellite communication experiments using the Engineering Test Satellite of VIII-type (ETS-VIII). In addition of MBCM, some other types of modulation schemes have been implemented in the same modem to enable a range of communication experiments to be performed. The modem can operate at variable data rates. The results of laboratory measurements agreed well with computer simulation results. Typical link budgets based on the parameters of ETS-VIII are also presented.

  • A New ATM Adaptation Layer for Time-Critical Traffic over Wireless ATM Networks

    Inwhee JOE  

     
    LETTER-Network

      Vol:
    E87-B No:8
      Page(s):
    2431-2434

    This letter describes the design and performance of a new ATM Adaptation Layer (AAL-UDP) for time-critical traffic over wireless ATM networks. The key ideas in the design consist of no discard at the AAL level and header protection with sequence number mechanism. The UDP/IP header is repeated for reliability, because it contains the most important information such as address and port number. The simulation results show that the AAL-UDP provides significant improvement in throughput as well as in application-level performance compared to the conventional AAL 5 case.

  • Frame Error Reduction Method by Variable Span CRC Coding for ITS Dedicated Short Range Communication

    Jongtaek OH  

     
    LETTER-Wireless Communication Technology

      Vol:
    E87-B No:8
      Page(s):
    2391-2393

    In this proposed method, CRC coding is only applied to data unit, not to padded zeros that are to fill up the fixed length of data unit. So improved frame error rate and protocol efficiency are possible instead of increment of receiver complexity.

  • Adaptive Robust Control Scheme for Linear Systems with Structured Uncertainties

    Hidetoshi OYA  Kojiro HAGINO  

     
    LETTER-Systems and Control

      Vol:
    E87-A No:8
      Page(s):
    2168-2173

    This paper deals with a design problem of an adaptive robust control system for linear systems with structured uncertainties. The control law consists of a state feedback with a fixed gain designed by using the nominal system, a state feedback with an adaptive gain tuned by a parameter adjustment law and a compensation input. We show the parameter adjustment law and that sufficient conditions for the existence of the compensation input are given in terms of linear matrix inequalities (LMIs). Finally, a numerical example is included.

  • Robust Transmission of Wavelet Video Sequence over Wireless Communication Channels

    Joo-Kyong LEE  Ki-Dong CHUNG  

     
    PAPER-Networking and System Architectures

      Vol:
    E87-D No:7
      Page(s):
    1633-1640

    Bit-errors in a subband of a wavelet-based video frame during network transmission affect not only lower-level subbands within the same frame but also the subsequent frames. This is because the video frame is wavelet-transformed image with multi-levels and referenced from later frames. In this paper, we propose a new motion estimation scheme for wavelet-based video called Intra-frame Motion Estimation (IME), in which each subband except the LL subband refers to the 1-level-lower subband in the same orientation within the same frame. This scheme protects video quality by confining the effects of the bit-errors of all subbands, except the LL subband, within a frame. We evaluated the performance of our proposed scheme in a simulated wireless network environment. As a result of tests, it was shown that the proposed IME algorithm performs better than MRME, a motion-compensated video coding scheme for wavelet video, in a heavy motion video sequence, while IME outperforms MRME at a high bit-rate in small motion video sequence.

  • Rate Distortion Optimized Coding Mode Selection for H.264/AVC in Wireless Environments

    Wei ZHANG  Yuanhua ZHOU  

     
    LETTER-Multimedia Systems

      Vol:
    E87-B No:7
      Page(s):
    2057-2060

    A flexible and robust rate-distortion optimization algorithm is presented to select macroblock coding mode for H.264/AVC transmission over wireless channels subject to burst errors. A two-state Markov model is used to describe the burst errors on the packet level. With the feedback information from the receiver and the estimation of the channel errors, the algorithm analyzes the distortion of the reconstructed macroblock at the decoder due to the channel errors and spatial and temporal error propagation. The optimal coding mode is chosen for each macroblock in rate-distortion (R-D)-based framework. Experimental results using the H.264/AVC test model show a significant performance of resilience to the burst errors.

  • Microphone Array with Minimum Mean-Square Error Short-Time Spectral Amplitude Estimator for Speech Enhancement

    Hongseok KWON  Jongmok SON  Keunsung BAE  

     
    LETTER

      Vol:
    E87-A No:6
      Page(s):
    1491-1494

    This paper describes a new speech enhancement system that employs a microphone array with post-processing based on minimum mean-square error short-time spectral amplitude (MMSE-STSA) estimator. To get more accurate MMSE-STSA estimator in a microphone array, modification and refinement procedure are carried out from each microphone output. Performance of the proposed system is compared with that of other methods using a microphone array. Noise removal experiments for white and pink noises demonstrate the superiority of the proposed speech enhancement system to others with a microphone array in average output SNRs and cepstral distance measures.

  • Bit Error Correctable Multiple Description Coding

    Kwang-Pyo CHOI  Chang-su HAN  Keun-Young LEE  

     
    PAPER

      Vol:
    E87-A No:6
      Page(s):
    1433-1440

    This paper proposes a new method, EC-MDC that can detect and correct bit errors in the bitstream generated by multiple description coding. The proposed method generates two sub-bitstreams having a few redundancies as much as conventional multiple description coding. If a sub-bitstream at one side has bit error, the bit error can be corrected by using sub-bitstream of the other side. In BER-SNR experiments, reconstruction quality of the proposed method shows about 11dB higher than that of the conventional MDC at BER < 10-3 when a sub-bitstream is corrupted.

  • All Digital DLL with Three Phase Tuning Stages

    Jin-Ho CHOI  Jin-Ku KANG  

     
    PAPER

      Vol:
    E87-A No:6
      Page(s):
    1305-1309

    This paper describes an all-digital DLL (Delay Locked Loop) circuit with a high phase resolution. The proposed architecture is based on three-stage phase tuning blocks for coarse, fine and ultra fine phase control. Each block has a phase detector, a phase selection block and a delay line, respectively. It was simulated in a 0.35 µm CMOS technology under 3.3 V power supply. The simulation result shows the maximum phase error can be reduced to 13-42 ps with the operating range of 250 MHz to 800 MHz.

  • Motion Vector Based Error Concealment Algorithms for Video Decoder

    Mei-Juan CHEN  Che-Shing CHEN  Ching-Ting HSU  

     
    PAPER-Multimedia Systems

      Vol:
    E87-B No:6
      Page(s):
    1648-1659

    Compressed video bitstream is sensitive to errors that may degrade the reconstructed images severely even the bit error rate is small. One approach to combat the impact of error is error concealment at the decoder without increasing the bit rate and changing the encoder. We propose motion vector based error concealment algorithms to recover the motion vector per pixel instead of that per block according to the relation of neighboring motion vectors. The displacement per pixel can be estimated more accurately by using the tendency of neighboring motion vectors. Besides, we use not only the relation among motion vectors, but also the pixels. The pixels of the error block are divided into different parts according to their consistency with neighboring blocks and the displacement at each pixel of these parts is interpolated by relative motion vectors. From simulation results, the proposed motion vector based methods provide better reconstruction quality for damaged images than other methods.

  • A Novel Two-Stage Channel Estimation Method for Wireless Communications

    Wei-Jian LIN  Tsui-Tsai LIN  Chia-Chi HUANG  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:6
      Page(s):
    1479-1486

    In this paper, we proposed a novel two-stage channel estimation (2S-CE) method. In contrast to conventional channel estimation methods, this method makes the maximum use of the information contributed by the known data in every transmission burst. In the first stage, the least-squares (LS) algorithm was used to estimate the channel impulse response (CIR) based on the normal training sequence. Then the maximum channel memory was estimated and used to locate the uncorrupted data in the guard interval. In the second stage, the uncorrupted data together with the normal training sequence were sent to the LS algorithm again to obtain the fine-tuned CIR. To verify the efficiency of the proposed 2S-CE method, both a theoretical analysis and computer simulations have been done. Computer simulation results confirm the analysis results and demonstrate that the proposed 2S-CE method outperforms a conventional single-stage channel estimation method.

  • Single Probe Method with Vector Detection for Measuring Microwave Reflection Coefficient

    Takashi IWASAKI  Makoto TAKASHIMA  

     
    PAPER-General Methods, Materials, and Passive Circuits

      Vol:
    E87-C No:5
      Page(s):
    665-671

    A novel method for measuring microwave reflection coefficients without the open and load standards is proposed. In this method, a single probe is inserted into an air line and the output wave is detected by a vector detector. Offset shorts are used for the calibration. The measurement system is constructed using 7 mm coaxial line and APC7 connectors. The result of the measurement in the frequency range 1-9 GHz shows the possibility of the proposed method. All the major systematic errors can be estimated from the data that is easily obtainable.

  • Performance of QPSK/OFDM on Frequency-Selective Rayleigh Fading Channels

    Jeong-Woo JWA  

     
    LETTER-Wireless Communication Technology

      Vol:
    E87-B No:5
      Page(s):
    1407-1411

    In this paper, we derive expressions for the bit error probability of QPSK/OFDM on frequency-selective Rayleigh fading channels. In the OFDM system, ICI (interchannel interference) caused by Doppler spread of the channel degrades the error performance of the system and introduces the error floor even for coherent detection. Analysis results show that the error performance of QPSK/OFDM can be degraded as the normalized maximum Doppler frequency fD /Bsub is increased where fD is the maximum Doppler frequency and Bsub is the subchannel bandwidth. Computer simulations confirm the theoretical analysis results for BPSK and QPSK signals.

  • An Efficient Error Correction Scheme Allowing Backward Compatibility with JPEG2000 Codestream

    Masayuki KUROSAKI  Hitoshi KIYA  

     
    PAPER

      Vol:
    E87-A No:4
      Page(s):
    816-822

    A scheme of error correction for JPEG2000 codestream is proposed in this paper. The scheme uses a forward error correction code (FEC) and a data hiding technique. The headers and the higher quality layers of the codestream are coded using FEC codes. Then the parity data are separated from the FEC-coded data and hidden in the JPEG2000 codestream. The hidden data are used for error correction at the decoder. Several error correction codes with different strength are selected for the main header, the tile-part headers, the packet headers, and the bodies. The codestream generated by the proposed scheme has backward compatibility with a standard JPEG2000 codestream. Thus, it can be decoded with a general decoder. Simulation results demonstrated the effectiveness of the proposed scheme.

  • Fractional Error Estimation Technique of the Space-Based SAR Processor Using RDA

    In-Pyo HONG  Han-Kyu PARK  

     
    PAPER-Sensing

      Vol:
    E87-B No:4
      Page(s):
    967-974

    It is a critical design process to estimate the fractional errors of the Synthetic Aperture Radar (SAR) processor before implementation. The contribution of this paper is to identify the chief sources and types and to suggest an estimation technique for overall fractional errors of the space-based SAR processor using Range-Doppler Algorithm (RDA). Also, simulation is performed to the Experimental-SAR (E-SAR) processor to examine the practicability and efficiency of the technique, the results are discussed, and the solutions for problems are recommended. Therefore, this technique can be used to estimate the fractional errors of the space-based SAR processor using RDA.

701-720hit(1060hit)