The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] intelligent(143hit)

41-60hit(143hit)

  • An Agent-Based Expert System Architecture for Product Return Administration

    Chen-Shu WANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E96-D No:1
      Page(s):
    73-80

    Product return is a critical but controversial issue. To deal with such a vague return problem, businesses must improve their information transparency in order to administrate the product return behaviour of their end users. This study proposes an intelligent return administration expert system (iRAES) to provide product return forecasting and decision support for returned product administration. The iRAES consists of two intelligent agents that adopt a hybrid data mining algorithm. The return diagnosis agent generates different alarms for certain types of product return, based on forecasts of the return possibility. The return recommender agent is implemented on the basis of case-based reasoning, and provides the return centre clerk with a recommendation for returned product administration. We present a 3C-iShop scenario to demonstrate the feasibility and efficiency of the iRAES architecture. Our experiments identify a particularly interesting return, for which iRAES generates a recommendation for returned product administration. On average, iRAES decreases the effort required to generate a recommendation by 70% compared to previous return administration systems, and improves performance via return decision support by 37%. iRAES is designed to accelerate product return administration, and improve the performance of product return knowledge management.

  • Intelligent Traffic Control Systems Based on IEEE 802.11 DCF/PCF

    Chanwoo PARK  Jungwoo LEE  

     
    LETTER-Intelligent Transport System

      Vol:
    E95-A No:9
      Page(s):
    1651-1654

    The research on driverless cars has been making much progress lately. In this paper, we propose a new traffic control system without traffic lights at an intersection. We assume a system with fully autonomous driverless cars, and infrastructure to avoid collision completely. When automobiles approach an intersection, they communicates with the access point in both random access mode and polling mode, and the movement of the automobiles will be coordinated by the infra structure (access point). Traffic congestion is very difficult to predict and deal with because it is a function of many unknown factors such as number of cars, weather, road conditions, accidents, etc. The proposed algorithm is designed for urban road networks to ease the congestion, and make it more predictable at the same time. A key idea of this paper is that IEEE 802.11 DCF/PCF mechanisms are used to control traffic flow for driverless cars when there are no traffic lights at an intersection. The algorithm uses the concept of contention/contention-free period of IEEE 802.11 to find a balance between the efficiency of traffic flow and the fairness between users.

  • Foreign Language Tutoring in Oral Conversations Using Spoken Dialog Systems

    Sungjin LEE  Hyungjong NOH  Jonghoon LEE  Kyusong LEE  Gary Geunbae LEE  

     
    PAPER-Speech Processing

      Vol:
    E95-D No:5
      Page(s):
    1216-1228

    Although there have been enormous investments into English education all around the world, not many differences have been made to change the English instruction style. Considering the shortcomings for the current teaching-learning methodology, we have been investigating advanced computer-assisted language learning (CALL) systems. This paper aims at summarizing a set of POSTECH approaches including theories, technologies, systems, and field studies and providing relevant pointers. On top of the state-of-the-art technologies of spoken dialog system, a variety of adaptations have been applied to overcome some problems caused by numerous errors and variations naturally produced by non-native speakers. Furthermore, a number of methods have been developed for generating educational feedback that help learners develop to be proficient. Integrating these efforts resulted in intelligent educational robots – Mero and Engkey – and virtual 3D language learning games, Pomy. To verify the effects of our approaches on students' communicative abilities, we have conducted a field study at an elementary school in Korea. The results showed that our CALL approaches can be enjoyable and fruitful activities for students. Although the results of this study bring us a step closer to understanding computer-based education, more studies are needed to consolidate the findings.

  • Stacked Rectangular Microstrip Antenna with a Shorting Plate and a Helical Pin for Triple Band Operation in ITS

    Takafumi FUJIMOTO  

     
    PAPER-Antennas and Propagation

      Vol:
    E93-B No:11
      Page(s):
    3058-3065

    A stacked rectangular microstrip antenna with a shorting plate and a helical pin is proposed as a car antenna for triple band operation in ITS. The proposed antenna operates as a conventional stacked microstrip antenna at the highest frequency band. At the middle and the lowest frequency bands, the antenna radiates at low elevation angles from the helical pin and the shorting plate. In this paper, as an example of triple band antennas in the ITS, an antenna is designed that supports PHS, VICS and ETC. The proposed antennas have the proper radiation pattern for each application and are small in size.

  • Otedama: A Relocatable RFID Information Repository Architecture

    Shigeya SUZUKI  Rodney VAN METER  Osamu NAKAMURA  Jun MURAI  

     
    PAPER

      Vol:
    E93-D No:11
      Page(s):
    2922-2931

    We present a novel RFID middleware architecture, Otedama, which makes use of a unique property of RFID information to improve performance. RFID tags are bound to items. New information related to an RFID tag is generated at the site where the ID exists, and the entity most interested in the history and the item itself is in close proximity to the RFID tag. To exploit this property, we propose a scheme which bundles information related to a specific ID into one object and moves that bundle to a nearby server as the RFID tag moves from place to place. By using this scheme, information is always accessible by querying a system near the physical location of the tag, providing better query performance. Additionally, the volume of records that must be kept by a repository manager is reduced, because the relocation naturally migrates data away as physical objects move. We show the effectiveness of this architecture by analyzing data from a major retailer, finding that information retrieval performance will be six times better, and the cost of search is possibly several times cheaper.

  • Visual Knowledge Structure Reasoning with Intelligent Topic Map

    Huimin LU  Boqin FENG  Xi CHEN  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E93-D No:10
      Page(s):
    2805-2812

    This paper presents a visual knowledge structure reasoning method using Intelligent Topic Map which extends the conventional Topic Map in structure and enhances its reasoning functions. Visual knowledge structure reasoning method integrates two types of knowledge reasoning: the knowledge logical relation reasoning and the knowledge structure reasoning. The knowledge logical relation reasoning implements knowledge consistency checking and the implicit associations reasoning between knowledge points. We propose a Knowledge Unit Circle Search strategy for the knowledge structure reasoning. It implements the semantic implication extension, the semantic relevant extension and the semantic class belonging confirmation. Moreover, the knowledge structure reasoning results are visualized using ITM Toolkit. A prototype system of visual knowledge structure reasoning has been implemented and applied to the massive knowledge organization, management and service for education.

  • Thermal Simulation of a Contactor with Feedback Controlled Magnet System

    Liang JI  Degui CHEN  Yingyi LIU  Xingwen LI  

     
    PAPER

      Vol:
    E93-C No:9
      Page(s):
    1424-1430

    Similarities and differences of the thermal analysis issues between the intelligent and general AC contactors are analyzed. Heat source model of the magnet system is established according to the unique control mode of the intelligent AC contactor. Linking with the features common of the two kinds of contactors, the extension of the thermal analysis method of the general AC contactor to the intelligent AC contactor is demonstrated. Consequently, a comprehensive thermal analysis model considering heat sources of both main circuit and magnet system is constructed for the intelligent AC contactor. With this model, the steady-state temperature rise of the intelligent AC contactor is calculated and compared with the measurements of an actual intelligent AC contactor.

  • Routing Autonomous Vehicles in the Improving Initial Task Assignment and Avoiding Deadlock Method

    Yusuke MORIHIRO  Toshiyuki MIYAMOTO  Sadatoshi KUMAGAI  

     
    PAPER

      Vol:
    E91-A No:11
      Page(s):
    3229-3236

    This paper discusses an on-line Tasks Assignment and Routing Problem (TARP) for Autonomous Transportation Systems (ATSs) in manufacturing systems. The TARP is a constrained version of the Pickup and Delivery Problem with Time Windows (PDPTW). In our former study, a cooperative algorithm, called the triple loop method, with autonomous distributed agents has been proposed. The Improving initial Task Assignment and Avoiding Deadlock method (ITAAD) is a faster algorithm than the triple loop method. In this paper, we propose a new vehicle routing method for the ITAAD. Results of computational experiments show effectiveness of the proposed routing method.

  • Autonomous Distributed Congestion Control Scheme in WCDMA Network

    Hafiz Farooq AHMAD  Hiroki SUGURI  Muhammad Qaisar CHOUDHARY  Ammar HASSAN  Ali LIAQAT  Muhammad Umer KHAN  

     
    PAPER

      Vol:
    E91-D No:9
      Page(s):
    2267-2275

    Wireless technology has become widely popular and an important means of communication. A key issue in delivering wireless services is the problem of congestion which has an adverse impact on the Quality of Service (QoS), especially timeliness. Although a lot of work has been done in the context of RRM (Radio Resource Management), the deliverance of quality service to the end user still remains a challenge. Therefore there is need for a system that provides real-time services to the users through high assurance. We propose an intelligent agent-based approach to guarantee a predefined Service Level Agreement (SLA) with heterogeneous user requirements for appropriate bandwidth allocation in QoS sensitive cellular networks. The proposed system architecture exploits Case Based Reasoning (CBR) technique to handle RRM process of congestion management. The system accomplishes predefined SLA through the use of Retrieval and Adaptation Algorithm based on CBR case library. The proposed intelligent agent architecture gives autonomy to Radio Network Controller (RNC) or Base Station (BS) in accepting, rejecting or buffering a connection request to manage system bandwidth. Instead of simply blocking the connection request as congestion hits the system, different buffering durations are allocated to diverse classes of users based on their SLA. This increases the opportunity of connection establishment and reduces the call blocking rate extensively in changing environment. We carry out simulation of the proposed system that verifies efficient performance for congestion handling. The results also show built-in dynamism of our system to cater for variety of SLA requirements.

  • Support by Warning or by Action: Which is Appropriate under Mismatches between Driver Intent and Traffic Conditions?

    Toshiyuki INAGAKI  Makoto ITOH  Yoshitomo NAGAI  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Vol:
    E90-A No:11
      Page(s):
    2540-2545

    This paper tries to answer the following question: What type of support should be given to an automobile driver when it is determined, via some method to monitor the driver's behavior and the traffic environment, that the driver's intent may not be appropriate to a traffic condition? With a medium fidelity, moving-base driving simulator, three conditions were compared: (a) Warning type support in which an auditory warning is given to the driver to enhance his/her situation recognition, (b) action type support in which an autonomous safety control action is executed to avoid an accident, and (c) the baseline condition in which no driver support is given. Results were as follows: (1) Either type of driver support was effective in accident prevention. (2) Acceptance of driver support functions varied context dependently. (3) Participants accepted a system-initiated automation invocation as long as no automation surprises were possible to occur.

  • An Initial Assignment Method for Tasks Assignment and Routing Problem of Autonomous Distributed AGVs

    Yusuke MORIHIRO  Toshiyuki MIYAMOTO  Sadatoshi KUMAGAI  

     
    PAPER

      Vol:
    E90-A No:11
      Page(s):
    2465-2471

    This paper discusses an on-line Tasks Assignment and Routing Problem (TARP) for Autonomous Transportation Systems (ATSs) in manufacturing systems. The TARP results in a constrained version of the Pickup and Delivery Problem with Time Windows (PDPTW). As an approach to this problem, a cooperative algorithm with autonomous distributed agents has been proposed. The algorithm is able to plan deadlock-free routes even though the buffer capacity is less, but includes reformability at the point that computation time of that case increases drastically. This paper proposes an initial task assignment method to reduce computation time on planning routes. Results of computational experiments show effectiveness of the proposed method.

  • Separability-Based Intelligent Scissors for Interactive Image Segmentation

    Noriaki SUETAKE  Eiji UCHINO  Kanae HIRATA  

     
    PAPER

      Vol:
    E90-D No:1
      Page(s):
    137-144

    Intelligent scissors is an interactive image segmentation algorithm which allows a user to select piece-wise globally optimal contour segment corresponding to a desired object boundary. However, the intelligent scissors is too sensitive to a noise and texture patterns in an image since it utilizes the gradient information concerning the pixel intensities. This paper describes a new intelligent scissors based on the concept of the separability in order to improve the object boundary extraction performance. The effectiveness of the proposed method has been confirmed by some experiments for actual images acquired by an ordinary digital camera.

  • DRBAC Model Using a WSNM for Services in i-Home

    Jong-Hyuk PARK  Sangjin LEE  In-Hwa HONG  

     
    PAPER

      Vol:
    E89-D No:12
      Page(s):
    2831-2837

    RBAC (Role Based Access Control) was added the concept of the role which user can have access to resources based on the role of the user, and it increased efficiency and expandability. But, evolution of computing power and internet technology has caused the up rise of the dynamic environments, in accordance with it, it will be expected to require a dynamic access control model considering various elements. In this paper, we propose DRBAC (Dynamic RBAC) model in intelligent Home (i-Home). This is an access control model suitable for user-oriented service in i-Home. In order to consider dynamic environment in the existing RBAC models, the proposed model executes assignments user-role and permission-role based on context. In addition, the proposed model provides scalable access control policies which are suitable for the characteristics of intelligent environment as considering the user location information as a temporary constraints condition. Furthermore, we design and implement WSNM (Wireless Sensor Network Module) for its services. Finally, the proposed model provides flexible and efficient authentication method which applied Domain-Group concept as well as user / device authentication.

  • Construction of a Fault-Tolerant Object Group Framework and Its Execution Analysis Using Home-Network Simulations

    Myungseok KANG  Jaeyun JUNG  Hagbae KIM  

     
    LETTER-Network Management/Operation

      Vol:
    E89-B No:12
      Page(s):
    3446-3449

    We propose a Fault-Tolerant Object Group framework that provides group management and fault-tolerance services for consistency maintenance and state transparency as well. Through a virtual home-network simulation, we validate that the FTOG framework supports both of the reliability and the stability of the distributed home-network systems.

  • Estimation of the Visibility Distance by Stereovision: A Generic Approach

    Nicolas HAUTIERE  Raphael LABAYRADE  Didier AUBERT  

     
    PAPER-Intelligent Transport Systems

      Vol:
    E89-D No:7
      Page(s):
    2084-2091

    An atmospheric visibility measurement system capable of quantifying the most common operating range of onboard exteroceptive sensors is a key parameter in the creation of driving assistance systems. This information is then utilized to adapt sensor operations and processing or to alert the driver that the onboard assistance system is momentarily inoperative. Moreover, a system capable of either detecting the presence of fog or estimating visibility distances constitutes in itself a driving aid. In this paper, we first present a review of different optical sensors likely to measure the visibility distance. We then present our stereovision based technique to estimate what we call the "mobilized visibility distance". This is the distance to the most distant object on the road surface having a contrast above 5%. In fact, this definition is very close to the definition of the meteorological visibility distance proposed by the International Commission on Illumination (CIE). The method combines the computation of both a depth map of the vehicle environment using the "v-disparity" approach and of local contrasts above 5%. Both methods are described separately. Then, their combination is detailed. A qualitative evaluation is done using different video sequences. Finally, a static quantitative evaluation is also performed thanks to reference targets installed on a dedicated test site.

  • Performance Analysis of Combined Vehicular Communication

    Hiroshi SAITO  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E89-B No:5
      Page(s):
    1486-1494

    The performance of the vehicular communication links used for Intelligent Transport Systems is investigated. Intervehicle communication (IVC) and combined vehicular communication implemented by IVC and additional communication media are studied and their performance is explicitly described. Through numerical studies, it is shown that performance varies according to parameter values such as the mean space headway, the speed of the vehicles, and the penetration ratio of the IVC device. To achieve a given level of performance, I propose (i) a design of the information delivery delay of additional communication media and (ii) a method determining the appropriate delay.

  • CIGMA: Active Inventory Service in Global E-Market Based on Efficient Catalog Management

    Su Myeon KIM  Seungwoo KANG  Heung-Kyu LEE  Junehwa SONG  

     
    PAPER

      Vol:
    E88-D No:12
      Page(s):
    2651-2663

    A fully Internet-connected business environment is subject to frequent changes. To ordinary customers, online shopping under such a dynamic environment can be frustrating. We propose a new E-commerce service called the CIGMA to assist online customers under such an environment. The CIGMA provides catalog comparison and purchase mediation services over multiple shopping sites for ordinary online customers. The service is based on up-to-date information by reflecting the frequent changes in catalog information instantaneously. It also matches the desire of online customers for fast response. This paper describes the CIGMA along with its architecture and the implementation of a working prototype.

  • FTOG-Based Management and Recovery Services

    Myungseok KANG  Jaeyun JUNG  Younghoon WHANG  Youngyong KIM  Hagbae KIM  

     
    LETTER-Dependable Computing

      Vol:
    E88-D No:11
      Page(s):
    2603-2605

    This paper presents a Fault-Tolerant Object Group (FTOG) model that provides the group management service and the fault-tolerance service for consistency maintenance and state transparency. Through Intelligent Home Network Simulator, we verify that FTOG model supports both of reliability and the stability of the distributed system.

  • A Cooperative Algorithm for Autonomous Distributed Vehicle Systems with Finite Buffer Capacity

    Toshiyuki MIYAMOTO  Norihiro TSUJIMOTO  Sadatoshi KUMAGAI  

     
    PAPER

      Vol:
    E88-A No:11
      Page(s):
    3036-3044

    Recently, there are so many researches on Autonomous Distributed Manufacturing Systems (ADMSs), where cooperation among agents is used to solve problems, such as the scheduling problem and the vehicle routing problem. We target ADMSs where an ADMS consists of two sub-systems: a Production System (PS) and an Autonomous Transportation System (ATS). This paper discusses an on-line Tasks Assignment and Routing Problem (TARP) for ATSs under conditions of given production schedule and finite buffer capacity. The TARP results in a constrained version of the Pickup and Delivery Problem with Time Windows (PDPTW), and this paper gives a mathematical formulation of the problem. This paper, also, proposes a cooperative algorithm to obtain suboptimal solutions in which no deadlocks and buffer overflows occur. By computational experiments, we will examine the effectiveness of the proposed algorithm. Computational experiments show that the proposed algorithm is able to obtain efficient and deadlock-free routes even though the buffer capacity is less.

  • Development of Ultra-Wideband Short-Range Impulse Radar System for Vehicular Applications

    Kiyoshi HAMAGUCHI  Hiroyo OGAWA  Takehiko KOBAYASHI  Ryuji KOHNO  

     
    INVITED PAPER

      Vol:
    E88-C No:10
      Page(s):
    1922-1931

    This paper introduces a state-of-art on an ultra-wideband (UWB) technology in intelligent transport systems (ITS). To examine the detection performance of a UWB short-range radar for vehicular applications, we developed a 26-GHz band short-range UWB radar system with an embedded compact MMIC-based RF module. In this paper, we briefly comment on the current regulatory environment for UWB radar systems by outlining the structure of an international organization involved in examining the regulatory status of these systems. We then describe the principles of detection and system design for impulse radar, the radar system that we developed, and a MMIC-based RF module as well as the performance of these devices. We measured their performance in a series of laboratory experiments and also measured UWB radar cross sections of an automobile. The results of our experiments suggest that our radar system is capable of detecting targets with a range resolution of around 9 cm.

41-60hit(143hit)