The search functionality is under construction.

Keyword Search Result

[Keyword] internet of things (IoT)(15hit)

1-15hit
  • Thermoelectric Effect of Ga-Sn-O Thin Films for Internet-of-Things Application

    Yuhei YAMAMOTO  Naoki SHIBATA  Tokiyoshi MATSUDA  Hidenori KAWANISHI  Mutsumi KIMURA  

     
    BRIEF PAPER-Electronic Materials

      Pubricized:
    2023/07/10
      Vol:
    E107-C No:1
      Page(s):
    18-21

    Thermoelectric effect of Ga-Sn-O (GTO) thin films has been investigated for Internet-of-Things application. It is found that the amorphous GTO thin films provide higher power factors (PF) than the polycrystalline ones, which is because grain boundaries block the electron conduction in the polycrystalline ones. It is also found that the GTO thin films annealed in vacuum provide higher PF than those annealed in air, which is because oxygen vacancies are terminated in those annealed in air. The PF and dimensionless figure of merit (ZT) is not so excellent, but the cost effectiveness is excellent, which is the most important for some examples of the Internet-of-Things application.

  • Nonvolatile Storage Cells Using FiCC for IoT Processors with Intermittent Operations

    Yuki ABE  Kazutoshi KOBAYASHI  Jun SHIOMI  Hiroyuki OCHI  

     
    PAPER

      Pubricized:
    2023/04/13
      Vol:
    E106-C No:10
      Page(s):
    546-555

    Energy harvesting has been widely investigated as a potential solution to supply power for Internet of Things (IoT) devices. Computing devices must operate intermittently rather than continuously, because harvested energy is unstable and some of IoT applications can be periodic. Therefore, processors for IoT devices with intermittent operation must feature a hibernation mode with zero-standby-power in addition to energy-efficient normal mode. In this paper, we describe the layout design and measurement results of a nonvolatile standard cell memory (NV-SCM) and nonvolatile flip-flops (NV-FF) with a nonvolatile memory using Fishbone-in-Cage Capacitor (FiCC) suitable for IoT processors with intermittent operations. They can be fabricated in any conventional CMOS process without any additional mask. NV-SCM and NV-FF are fabricated in a 180nm CMOS process technology. The area overhead by nonvolatility of a bit cell are 74% in NV-SCM and 29% in NV-FF, respectively. We confirmed full functionality of the NV-SCM and NV-FF. The nonvolatile system using proposed NV-SCM and NV-FF can reduce the energy consumption by 24.3% compared to the volatile system when hibernation/normal operation time ratio is 500 as shown in the simulation.

  • Scaling Law of Energy Efficiency in Intelligent Reflecting Surface Enabled Internet of Things Networks

    Juan ZHAO  Wei-Ping ZHU  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2021/09/29
      Vol:
    E105-A No:4
      Page(s):
    739-742

    The energy efficiency of intelligent reflecting surface (IRS) enabled internet of things (IoT) networks is studied in this letter. The energy efficiency is mathematically expressed, respectively, as the number of reflecting elements and the spectral efficiency of the network and is shown to scale in the logarithm of the reflecting elements number in the high regime of transmit power from source node. Furthermore, it is revealed that the energy efficiency scales linearly over the spectral efficiency in the high regime of transmit power, in contrast to conventional studies on energy and spectral efficiency trade-offs in the non-IRS wireless IoT networks. Numerical simulations are carried out to verify the derived results for the IRS enabled IoT networks.

  • Efficient Task Allocation Protocol for a Hybrid-Hierarchical Spatial-Aerial-Terrestrial Edge-Centric IoT Architecture Open Access

    Abbas JAMALIPOUR  Forough SHIRIN ABKENAR  

     
    INVITED PAPER

      Pubricized:
    2021/08/17
      Vol:
    E105-B No:2
      Page(s):
    116-130

    In this paper, we propose a novel Hybrid-Hierarchical spatial-aerial-Terrestrial Edge-Centric (H2TEC) for the space-air integrated Internet of Things (IoT) networks. (H2TEC) comprises unmanned aerial vehicles (UAVs) that act as mobile fog nodes to provide the required services for terminal nodes (TNs) in cooperation with the satellites. TNs in (H2TEC) offload their generated tasks to the UAVs for further processing. Due to the limited energy budget of TNs, a novel task allocation protocol, named TOP, is proposed to minimize the energy consumption of TNs while guaranteeing the outage probability and network reliability for which the transmission rate of TNs is optimized. TOP also takes advantage of the energy harvesting by which the low earth orbit satellites transfer energy to the UAVs when the remaining energy of the UAVs is below a predefined threshold. To this end, the harvested power of the UAVs is optimized alongside the corresponding harvesting time so that the UAVs can improve the network throughput via processing more bits. Numerical results reveal that TOP outperforms the baseline method in critical situations that more power is required to process the task. It is also found that even in such situations, the energy harvesting mechanism provided in the TOP yields a more efficient network throughput.

  • Highly Reliable Radio Access Scheme by Duplicate Transmissions via Multiple Frequency Channels and Suppressed Useless Transmission under Interference from Other Systems

    Hideya SO  Takafumi FUJITA  Kento YOSHIZAWA  Maiko NAYA  Takashi SHIMIZU  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2020/12/04
      Vol:
    E104-B No:6
      Page(s):
    696-704

    This paper proposes a novel radio access scheme that uses duplicated transmission via multiple frequency channels to achieve mission critical Internet of Things (IoT) services requiring highly reliable wireless communications; the interference constraints that yield the required reliability are revealed. To achieve mission critical IoT services by wireless communication, it is necessary to improve reliability in addition to satisfying the required transmission delay time. Reliability is defined as the packet arrival rate without exceeding the desired transmission delay time. Traffic of the own system and interference from the other systems using the same frequency channel such as unlicensed bands degrades the reliability. One solution is the frequency/time diversity technique. However, these techniques may not achieve the required reliability because of the time taken to achieve the correct reception. This paper proposes a novel scheme that transmits duplicate packets utilizing multiple wireless interfaces over multiple frequency channels. It also proposes a suppressed duplicate transmission (SDT) scheme, which prevents the wastage of radio resources. The proposed scheme achieves the same reliable performance as the conventional scheme but has higher tolerance against interference than retransmission. We evaluate the relationship between the reliability and the occupation time ratio where the interference occupation time ratio is defined as the usage ratio of the frequency resources occupied by the other systems. We reveal the upper bound of the interference occupation time ratio for each frequency channel, which is needed if channel selection control is to achieve the required reliability.

  • Design of Switched-Capacitor Voltage Boost Converter for Low-Voltage and Low-Power Energy Harvesting Systems Open Access

    Tetsuya HIROSE  Yuichiro NAKAZAWA  

     
    INVITED PAPER-Electronic Circuits

      Pubricized:
    2020/05/20
      Vol:
    E103-C No:10
      Page(s):
    446-457

    This paper discusses and elaborates an analytical model of a multi-stage switched-capacitor (SC) voltage boost converter (VBC) for low-voltage and low-power energy harvesting systems, because the output impedance of the VBC, which is derived from the analytical model, plays an important role in the VBC's performance. In our proposed method, we focus on currents flowing into input and output terminals of each stage and model the VBCs using switching frequency f, charge transfer capacitance CF, load capacitance CL, and process dependent parasitic capacitance's parameter k. A comparison between simulated and calculated results showed that our model can estimate the output impedance of the VBC accurately. Our model is useful for comparing the relative merits of different types of multi-stage SC VBCs. Moreover, we demonstrate the performance of a prototype SC VBC and energy harvesting system using the SC VBC to show the effectiveness and feasibility of our proposed design guideline.

  • Extended Inter-Device Digital Rights Sharing and Transfer Based on Device-Owner Equality Verification Using Homomorphic Encryption

    Yoshihiko OMORI  Takao YAMASHITA  

     
    PAPER-Information Network

      Pubricized:
    2020/03/13
      Vol:
    E103-D No:6
      Page(s):
    1339-1354

    In this paper, we propose homomorphic encryption based device owner equality verification (HE-DOEV), a new method to verify whether the owners of two devices are the same. The proposed method is expected to be used for credential sharing among devices owned by the same user. Credential sharing is essential to improve the usability of devices with hardware-assisted trusted environments, such as a secure element (SE) and a trusted execution environment (TEE), for securely storing credentials such as private keys. In the HE-DOEV method, we assume that the owner of every device is associated with a public key infrastructure (PKI) certificate issued by an identity provider (IdP), where a PKI certificate is used to authenticate the owner of a device. In the HE-DOEV method, device owner equality is collaboratively verified by user devices and IdPs that issue PKI certificates to them. The HE-DOEV method verifies device owner equality under the condition where multiple IdPs can issue PKI certificates to user devices. In addition, it can verify the equality of device owners without disclosing to others any privacy-related information such as personally identifiable information and long-lived identifiers managed by an entity. The disclosure of privacy-related information is eliminated by using homomorphic encryption. We evaluated the processing performance of a server needed for an IdP in the HE-DOEV method. The evaluation showed that the HE-DOEV method can provide a DOEV service for 100 million users by using a small-scale system in terms of the number of servers.

  • A True Random Number Generator Method Embedded in Wireless Communication Systems

    Toshinori SUZUKI  Masahiro KAMINAGA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E103-A No:4
      Page(s):
    686-694

    To increase the number of wireless devices such as mobile or IoT terminals, cryptosystems are essential for secure communications. In this regard, random number generation is crucial because the appropriate function of cryptosystems relies on it to work properly. This paper proposes a true random number generator (TRNG) method capable of working in wireless communication systems. By embedding a TRNG in such systems, no additional analog circuits are required and working conditions can be limited as long as wireless communication systems are functioning properly, making TRNG method cost-effective. We also present some theoretical background and considerations. We next conduct experimental verification, which strongly supports the viability of the proposed method.

  • Relay Mobile Device Discovery with Proximity Services for User-Provided IoT Networks

    Masanori ISHINO  Yuki KOIZUMI  Toru HASEGAWA  

     
    PAPER-Network

      Pubricized:
    2017/05/19
      Vol:
    E100-B No:11
      Page(s):
    2038-2048

    Internet of Things (IoT) devices deployed in urban areas are seen as data sources for urban sensing IoT applications. Since installing cellular interfaces on a huge number of IoT devices is expensive, we propose to use a user equipment (UE) device with a local wireless interface as a mobile IoT gateway for fixed IoT devices. In this paper, we design a new mobile architecture based on cellular networks to accommodate non-cellular fixed IoT devices by UE devices working as IoT gateways. One key feature is that our architecture leverages proximity services (ProSe) to discover relay UE devices with low overhead in terms of discovery messages. Through simulation studies, we clarify the feasibility of our architecture including the relay UE discovery mechanism in urban areas.

  • A Smart City Based on Ambient Intelligence Open Access

    Tomoaki OHTSUKI  

     
    INVITED PAPER-Network

      Pubricized:
    2017/03/22
      Vol:
    E100-B No:9
      Page(s):
    1547-1553

    The United Nations (UN) reports that the global population reached 7 billion in 2011, and today, it stands at about 7.3 billion. This dramatic increase has been driven largely by the extension of people's lifetime. The urban population has been also increasing, which causes a lot of issues for cities, such as congestion and increased demand for resources, including energy, water, sanitation, education, and healthcare services. A smart city has been expected a lot to solve those issues. The concept of a smart city is not new. Due to the progress of information and communication technology (ICT), including the Internet of Things (IoT) and big data (BD), the concept of a smart city has been being realized in various aspects. This paper introduces the concept and definition of a smart city. Then it explains the ambient intelligence that supports a smart city. Moreover, it introduces several key components of a smart city.

  • Image Sensor Communication — Current Status and Future Perspectives Open Access

    Nobuo IIZUKA  

     
    INVITED PAPER-Wireless Communication Technologies

      Pubricized:
    2016/12/14
      Vol:
    E100-B No:6
      Page(s):
    911-916

    Image sensor communication (ISC), a type of visible light communication, is an emerging wireless communication technology that uses LEDs to transmit a signal and uses an image sensor in a camera to receive the signal. This paper discusses the present status of and future trends in ISC by describing the essential characteristics and features of ISC. Moreover, we overview the products and expected future applications of ISC.

  • Challenges of Fully Homomorphic Encryptions for the Internet of Things Open Access

    Licheng WANG  Jing LI  Haseeb AHMAD  

     
    INVITED PAPER

      Pubricized:
    2016/05/31
      Vol:
    E99-D No:8
      Page(s):
    1982-1990

    With the flourish of applications based on the Internet of Things (IoT), privacy issues have been attracting a lot of attentions. Although the concept of privacy homomorphism was proposed along with the birth of the well-known RSA cryptosystems, cryptographers over the world have spent about three decades for finding the first implementation of the so-called fully homomorphic encryption (FHE). Despite of, currently known FHE schemes, including the original Gentry's scheme and many subsequent improvements as well as the other alternatives, are not appropriate for IoT-oriented applications because most of them suffer from the problems of inefficient key size and noisy restraining. In addition, for providing fully support to IoT-oriented applications, symmetric fully homomorphic encryptions are also highly desirable. This survey presents an analysis on the challenges of designing secure and practical FHE for IoT, from the perspectives of lightweight requirements as well as the security requirements. In particular, some issues about designing noise-free FHE schemes would be addressed.

  • GRMR: Greedy Regional Multicast Routing for Wireless Sensor Networks

    Shimin SUN  Li HAN  Sunyoung HAN  

     
    PAPER

      Pubricized:
    2015/10/21
      Vol:
    E99-D No:1
      Page(s):
    21-29

    Information Centric Networking (ICN) is a promising architecture as an alternative paradigm to traditional IP networking. The innovative concepts, such as named data, name-based routing, and in-network caching bring lots of benefits to Wireless Sensor Networks (WSNs). Simple and robust communication model of ICN, based on interest/data messages exchange, is appealing to be deployed in WSNs. However, ICN architectures are designed for power supplied network devices rather than resource-constrained sensor nodes. Introducing ICN-liked architecture to WSNs needs to rethink the naming scheme and forwarding strategy to meet the requirements of energy efficiency and failure recovery. This paper presents a light weight data centric routing mechanism (GRMR) for interest dissemination and data delivery in location-aware WSNs. A simple naming scheme gives assistance for routing decision by individual nodes. Greedy routing engaging with regional multicast mechanism provides an efficient data centric routing approach. The performance is analytically evaluated and simulated in NS-2. The results indicate that GRMR achieves significant energy efficiency under investigated scenarios.

  • A Routing-Based Mobility Management Scheme for IoT Devices in Wireless Mobile Networks Open Access

    Masanori ISHINO  Yuki KOIZUMI  Toru HASEGAWA  

     
    PAPER

      Vol:
    E98-B No:12
      Page(s):
    2376-2381

    Internet of Things (IoT) devices, which have different characteristics in mobility and communication patterns from traditional mobile devices such as cellular phones, have come into existence as a new type of mobile devices. A strict mobility management scheme for providing highly mobile devices with seamless access is over-engineered for IoT devices' mobility management. We revisit current mobility management schemes for wireless mobile networks based on identifier/locator separation. In this paper, we focus on IoT communication patterns, and propose a new routing-based mobility scheme for them. Our scheme adopts routing information aggregation scheme using the Bloom Filter as a data structure to store routing information. We clarify the effectiveness of our scheme in IoT environments with a large number of IoT devices, and discuss its deployment issues.

  • Internet of Things (IoT): Present State and Future Prospects Open Access

    Yuichi KAWAMOTO  Hiroki NISHIYAMA  Nei KATO  Naoko YOSHIMURA  Shinichi YAMAMOTO  

     
    INVITED PAPER

      Vol:
    E97-D No:10
      Page(s):
    2568-2575

    The recent development of communication devices and wireless network technologies continues to advance the new era of the Internet and telecommunications. The various “things”, which include not only communication devices but also every other physical object on the planet, are also going to be connected to the Internet, and controlled through wireless networks. This concept, which is referred to as the “Internet of Things (IoT)”, has attracted much attention from many researchers in recent years. The concept of IoT can be associated with multiple research areas such as body area networks, Device-to-Device (D2D) communications networks, home area networks, Unmanned Aerial Vehicle (UAV) networks, satellite networks, and so forth. Also, there are various kinds of applications created by using IoT technologies. Thus, the concept of the IoT is expected to be integrated into our society and support our daily life in the near future. In this paper, we introduce different classifications of IoT with examples of utilizing IoT technologies. In addition, as an example of a practical system using IoT, a tsunami detection system (which is composed of a satellite, sensor terminals, and an active monitoring system for real-time simultaneous utilization of the devices) is introduced. Furthermore, the requirements of the next generation systems with the IoT are delineated in the paper.