The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] macromodel(9hit)

1-9hit
  • Behavioral Circuit Macromodeling and Analog LSI Implementation for Automobile Engine Intake System

    Zhangcai HUANG  Yasuaki INOUE  Hong YU  Jun PAN  Yun YANG  Quan ZHANG  Shuai FANG  

     
    PAPER

      Vol:
    E90-A No:4
      Page(s):
    732-740

    Accurate estimating or measuring the intake manifold absolute pressure plays an important role in automobile engine control. In order to achieve the real-time estimation of the absolute pressure, the high accuracy and high speed processing ability are required for automobile engine control systems. Therefore, in this paper, an analog method is discussed and a fully integrated analog circuit is proposed to simulate automobile intake systems. Furthermore, a novel behavioral macromodeling is proposed for the analog circuit design. With the analog circuit, the intake manifold absolute pressure, which plays an important role for the effective automobile engine control, can be accurately estimated or measured in real time.

  • Passive Reduced-Order Macro-Modeling for Linear Time-Delay Interconnect Systems

    Wenliang TSENG  Chien-Nan Jimmy LIU  Chauchin SU  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E89-C No:11
      Page(s):
    1713-1718

    This paper presents a methodology based on congruent transformation for distributed interconnects described by state-space time-delays system. The proposed approach is to obtain the passive reduced order of linear time-delays system. The unified formulations are used to satisfy the passive preservation. The details of the mathematical proof and a couple of validation examples are given in this paper.

  • Linear and Nonlinear Macromodels for System-Level Signal Integrity and EMC Assessment

    Flavio CANAVERO  Stefano GRIVET-TALOCIA  Ivan A. MAIO  Igor S. STIEVANO  

     
    INVITED PAPER

      Vol:
    E88-B No:8
      Page(s):
    3121-3126

    This paper presents a systematic methodology for the system-level assessment of signal integrity and electromagnetic compatibility effects in high-speed communication and information systems. The proposed modeling strategy is illustrated via a case study consisting of a critical coupled net of a complex system. Three main methodologies are employed for the construction of accurate and efficient macromodels for each of the sub-structures typically found along the signal propagation paths, i.e. drivers/receivers, transmission-line interconnects, and interconnects with a complex 3D geometry such as vias and connectors. The resulting macromodels are cast in a common form, enabling the use of either SPICE-like circuit solvers or VHDL-AMS equation-based solvers for system-level EMC predictions.

  • A Low Temperature DC Characteristic Analysis Utilizing a Floating Gate Neuron MOS Macromodel

    Tadahiro OCHIAI  Hiroshi HATANO  

     
    LETTER-Integrated Electronics

      Vol:
    E86-C No:6
      Page(s):
    1114-1116

    Utilizing a macromodel which calculates the floating gate potential by combining resistances and dependent voltage and current sources, DC transfer characteristics for multi-input neuron MOS inverters and for those in the neuron MOS full adder circuit are simulated both at room temperature and at 77 K. Based on the simulated results, low temperature circuit failures are discussed. Furthermore, circuit design parameter optimization both for low and room temperature operations is described.

  • A Framework for Macromodeling and Mixed-Mode Simulation of Circuits/Interconnects and Electromagnetic Radiations

    Takayuki WATANABE  Hideki ASAI  

     
    PAPER

      Vol:
    E86-A No:2
      Page(s):
    252-261

    This paper presents a framework for modeling and mixed-mode simulation of circuits/interconnects and electromagnetic (EM-) radiations. The proposed framework investigates the signal integrity in VLSI chips, packages and wiring boards at the GHz-band level, and verifies the electromagnetic interference (EMI) and the electromagnetic compatibility (EMC) of high-speed systems. In our framework, the frequency characteristics of interconnects and EM-radiations are extracted by the full-wave FDTD simulation. The macromodels of interconnects are synthesized as SPICE subcircuits, and the impulse responses of EM-radiations are stored in the database. Once the macromodels are synthesized, the circuit simulation with the consideration of EM-effects can be performed by using SPICE. The EM-field distributions can be also easily calculated by taking convolutions of pre-simulated EM impulse responses and the SPICE results.

  • Acceleration Techniques for Synthesis and Analysis of Time-Domain Models of Interconnects Using FDTD Method

    Takayuki WATANABE  Hideki ASAI  

     
    LETTER-Circuit Theory

      Vol:
    E84-A No:1
      Page(s):
    367-371

    This report describes an acceleration technique to synthesize time-domain macromodels of interconnects using FDTD method. In FDTD calculation, the characteristic impedance of the interconnect is inserted into every terminal in order to damp quickly the transient waveforms. Additionally, an efficient technique for analyzing the macromodels is proposed. We demonstrate the efficiency of this method with examples.

  • Hierarchical Least-Squares Algorithm for Macromodeling High-Speed Interconnects Characterized by Sampled Data

    Yuichi TANJI  Mamoru TANAKA  

     
    PAPER-General Fundamentals and Boundaries

      Vol:
    E83-A No:9
      Page(s):
    1833-1843

    The interconnect analysis of on- and off-chips is very important in the design of high-speed signal processing, digital communication, and microwave electronic systems. When the interconnects are characterized by sampled data via electromagnetic analysis, the circuit-level simulation of the network requires rational approximation of the sampled data. Since the frequency band of the sampled data is more than 10 GHz, the rational function must fit into it at many frequency points. The rational function is approximated using the orthogonal least-squares method. With an increase in the number of the fitting data, the least-squares method suffers from a singularity problem. To avoid this, the sampled data are hierarchically approximated in this paper. Moreover, to reduce the computational cost of the circuit-level simulation, the parameter matrix of the interconnects is approximated by a rational matrix with one common denominator polynomial, and the selective orthogonalization procedure is presented.

  • A Proposition on Floating Gate Neuron MOS Macromodeling for Device Fabrications

    Tadahiro OCHIAI  Hiroshi HATANO  

     
    PAPER

      Vol:
    E82-A No:11
      Page(s):
    2485-2491

    A neuron MOS transistor has a floating gate and multiple input gates which are capacitively coupling with the floating gate. Dramatic reduction in the number of transistors and interconnections was achieved by employing the neuron MOS in circuit designs. Since the neuron MOS gate electrode is electrically floating, it is not necessarily easy to calculate the floating gate potential using circuit simulator SPICE. In order to simulate floating gate neuron MOS circuits, a macromodel which calculates the floating gate potential combining resistances and dependent voltage and current sources has been proposed. Eight kinds of neuron MOS circuits were designed and fabricated by a double polysilicon two level metal 1.2 µ m CMOS process. Utilizing SPICE, all the neuron MOS circuits were confirmed to operate correctly. The apparent threshold voltage as seen from the input gate in the 2-input n-channel neuron MOS transistor is arbitrarily changed by a control gate signal. Multi-input neuron MOS inverters and neuron MOS full adder circuits have been successfully simulated. Moreover, the effectiveness of the proposed macromodel has been experimentally verified by fabricated circuit measurements. Measured results confirmed that 3-input neuron MOS inverter outputs the low level when the number of input gates to which a high level is applied is more than half of all input gates.

  • A TFT-LCD Simulation Method Using Pixel Macro Models

    Hitoshi AOKI  Zhiping YU  

     
    PAPER-Electronic Displays

      Vol:
    E82-C No:6
      Page(s):
    1025-1030

    The full liquid crystal display (LCD) simulation with real transistors and other active components is unrealistic. Because a flat panel display (FPD) includes thin-film-transistors (TFT's) whose number is, at least, the number of total pixels. It hits the simulation limit of SPICE if the number of transistors are more than 0.5 million. This paper demonstrates a new, fast, and effective simulation method for a full LCD panel. The method makes it possible to simulate large LCD panels whereas the conventional method cannot handle. The simulation circuit consists of a-Si TFT model presented earlier, the liquid crystal, the pixel macro models, and interconnects. We show the model parameter extraction and the pixel macro modeling process associated with the simulation results. Using the simulation method presented here some larger LCD panels can be accurately simulated in less than a minute on a workstation.