The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] magnetization(15hit)

1-15hit
  • Estimation of Core Size Distribution of Magnetic Nanoparticles Using High-Tc SQUID Magnetometer and Particle Swarm Optimizer-Based Inversion Technique Open Access

    Mohd Mawardi SAARI  Mohd Herwan SULAIMAN  Toshihiko KIWA  

     
    PAPER

      Pubricized:
    2023/10/25
      Vol:
    E107-C No:6
      Page(s):
    176-182

    In this work, the core size estimation technique of magnetic nanoparticles (MNPs) using the static magnetization curve obtained from a high-Tc SQUID magnetometer and a metaheuristic inversion technique based on the Particle Swarm Optimizer (PSO) algorithm is presented. The high-Tc SQUID magnetometer is constructed from a high-Tc SQUID sensor coupled by a flux transformer to sense the modulated magnetization signal from a sample. The magnetization signal is modulated by the lateral vibration of the sample on top of a planar differential detection coil of the flux transformer. A pair of primary and excitation coils are utilized to apply an excitation field parallel to the sensitive axis of the detection coil. Using the high-Tc SQUID magnetometer, the magnetization curve of a commercial MNP sample (Resovist) was measured in a logarithmic scale of the excitation field. The PSO inverse technique is then applied to the magnetization curve to construct the magnetic moment distribution. A multimodal normalized log-normal distribution was used in the minimization of the objective function of the PSO inversion technique, and a modification of the PSO search region is proposed to improve the exploration and exploitation of the PSO particles. As a result, a good agreement on the Resovist magnetic core size was obtained between the proposed technique and the non-negative least square (NNLS) inversion technique. The estimated core sizes of 8.0484 nm and 20.3018 nm agreed well with the values reported in the literature using the commercial low-Tc SQUID magnetometer with the SVD and NNLS inversion techniques. Compared to the NNLS inversion technique, the PSO inversion technique had merits in exploring an optimal core size distribution freely without being regularized by a parameter and facilitating an easy peak position determination owing to the smoothness of the constructed distribution. The combination of the high-Tc SQUID magnetometer and the PSO-based reconstruction technique offers a powerful approach for characterizing the MNP core size distribution, and further improvements can be expected from the recent state-of-the-art optimization algorithm to optimize further the computation time and the best objective function value.

  • Effect of Applied Magnetic Field Angle and Intensity on Magnetic Cluster State of Stacked Perpendicular Recording Media

    Shohei SATO  Yoshiaki YAMAGUCHI  Ryuji SUGITA  

     
    PAPER

      Vol:
    E96-C No:12
      Page(s):
    1479-1483

    The uniform magnetic field of various strength was applied to the perpendicularly and in-plane demagnetized media, and the change in each magnetic cluster state was investigated as the fundamental investigation of the influence of demagnetization method on noise during signal recording on the stacked perpendicular recording media. The results showed that the in-plane demagnetization can achieve lower noise level if the recording field is not very high. In other words, the in-plane demagnetization is an effective way to achieve lower noise in transition area, near track edge of recorded bit, and in high-density bit. In addition, the simulation clarified that this noise reduction can be explained using the idea of sub-domain structure in the in-plane demagnetized media.

  • Study of the DC Performance of Fabricated Magnetic Tunnel Junction Integrated on Back-End Metal Line of CMOS Circuits

    Fumitaka IGA  Masashi KAMIYANAGI  Shoji IKEDA  Katsuya MIURA  Jun HAYAKAWA  Haruhiro HASEGAWA  Takahiro HANYU  Hideo OHNO  Tetsuo ENDOH  

     
    PAPER-Flash/Advanced Memory

      Vol:
    E93-C No:5
      Page(s):
    608-613

    In this paper, we have succeeded in the fabrication of high performance Magnetic Tunnel Junction (MTJ) which is integrated in CMOS circuit with 4-Metal/ 1-poly Gate 0.14 µm CMOS process. We have measured the DC characteristics of the MTJ that is fabricated on via metal of 3rd layer metal line. This MTJ of 60180 nm2 achieves a large change in resistance of 3.52 kΩ (anti-parallel) with TMR ratio of 151% at room temperature, which is large enough for sensing scheme of standard CMOS logic. Furthermore, the write current is 320 µA that can be driven by a standard MOS transistor. As the results, it is shown that the DC performance of our fabricated MTJ integrated in CMOS circuits is very good for our novel spin logic (MTJ-based logic) device.

  • Thermodynamic Behavior of a Nano-Sized Magnetic Grain near the Superparamagnetic Limit

    Jian QIN  Dan WEI  

     
    PAPER

      Vol:
    E86-C No:9
      Page(s):
    1825-1829

    A combined theory of the micromagnetic and Monte Carlo simulations is established to analyze the thermal property of a nano-sized magnetic grain. The Langevin equation of a grain's magnetic moment is the Landau-Lifshitz equation augmented by a "random-field" term representing the thermal-agitated force. The angular distribution of the magnetic moment of the grain is studied via its time evolution process. The switching of the magnetic moment vector between two energy-minimum states is observed. A simple analytical expression is obtained for the simulated attempt frequency f0, which is related to the magnetic constant of the nano-grain, and agrees well with the phenomenological value.

  • High-Frequency Magneto-Optic Probe Based on BiRIG Rotation Magnetization

    Etsushi YAMAZAKI  Shinichi WAKANA  Hyonde PARK  Masato KISHI  Masahiro TSUCHIYA  

     
    INVITED PAPER-Measurements Techniques

      Vol:
    E86-C No:7
      Page(s):
    1338-1344

    In this paper, we describe our study on a novel high-frequency magnetic field probe based both on the BiRIG rotation magnetization (RM) phenomenon and the third-generation optical probing scheme. First, we explain our experimental investigation on RF sensitivity and frequency response of the RM-based Faraday effect in a commercially available Bi-substituted rare-earth iron garnet plate. Second, we report on the implementation of fiber-optic magneto-optic (MO) probe heads with bandwidths of 10 GHz or broader, which have been brought about by careful arrangement of the magnetization axis of a single-domain crystal and the highly sensitive fiber-edge optical probing scheme. Third, we describe a few RF magnetic field distribution measurements carried out successfully over GHz-band microstrip line circuits. The results of the study imply the substantial potential of the present MO probe head for the RF current visualization.

  • MRAM Writing Circuitry to Compensate for Thermal Variation of Magnetization Reversal Current

    Takeshi HONDA  Noboru SAKIMURA  Tadahiko SUGIBAYASHI  Hideaki NUMATA  Sadahiko MIURA  Hiromitsu HADA  Shuichi TAHARA  

     
    PAPER-Circuit Design

      Vol:
    E86-C No:4
      Page(s):
    612-617

    MRAM-writing circuitry to compensate for the thermal variation of the magnetization-reversal current is proposed. The writing current of the proposed circuitry is designed to decrease in proportion to an increase in temperature. This technique prevents multiple-write failures from degrading 1 Gb MRAM yield where the standard deviation of magnetization-reversal current variation from other origins is less than 5%.

  • Recording Capability and Thermal Stability for Particulate Media with Inter-Particle Interaction

    Toshiyuki SUZUKI  Terumitsu TANAKA  

     
    PAPER

      Vol:
    E84-C No:9
      Page(s):
    1147-1153

    Particulate media composed of very small particles were studied to determine high-density recording performance and thermal stability. Studied media included metal particulate media with mean particle length of 71, 102 and 148 nm, and Ba ferrite particulate media with mean diameter of 22, 28 and 50 nm. Using a loss-term simulation program, taking into account gap-loss, spacing-loss and particle length loss, the recording capability (D20 of 265 kFRPI for MP and 290 kFRPI for Ba ferrite media) was estimated. Thermal stability was evaluated from magnetization time decay measurements. It was found that MP media with large Ku values and 71 nm particles were satisfactorily stable, and the particle volume is still large enough in respect of thermal stability. However, 22-nm Ba ferrite media were less stable, primarily because of small Ku values and particle volume. It was also clarified that positive inter-particle interaction accelerates magnetization time decay, in the presence of a large reverse field.

  • Control of Phase Homogeneity of MnZn-Ferrite Head Materials Using High Temperature Static Magnetic Measurements

    Alexandre B. PAKHOMOV  Catherine Y. WONG  K. P. LEUNG  

     
    PAPER

      Vol:
    E84-C No:9
      Page(s):
    1154-1157

    Single crystal MnZn Ferrites are used as core materials for the reader of inductive magnetic heads. Magnetic phase homogeneity of the material is one of the parameters, which affects the quality of the devise. We used static magnetic measurements above the apparent Curie temperature of the Ferrite materials to determine the presence of such phases. High performance samples are non-magnetic at high temperature. In low performance materials, a small but non-zero spontaneous magnetization at high temperature indicates the presence of the second phase.

  • Addition of SiO2 to Increase Coercivity and Squareness Ratio of Ba Ferrite Films for Perpendicular Magnetic Recording Media

    Jie FENG  Nobuhiko FUNABASHI  Nobuhiro MATSUSHITA  Shigeki NAKAGAWA  Masahiko NAOE  

     
    PAPER

      Vol:
    E83-C No:9
      Page(s):
    1489-1493

    SiO2-added Ba ferrite (BaM:SiO2) films were prepared using BaFe12Si0.18Ox targets. BaM:SiO2 films exhibited perpendicular coercivity Hc⊥ of over 4.2 kOe and squareness ratio of 0.83, although saturation magnetization Ms decreased by about 15%. The angular dependence of coercivity Hc and remanent coercivity Hr were investigated to explain the magnetization reversal mechanism. Intergranular interactions in the films were also evaluated. The magnetization reversal mode of Ba ferrite films with and without SiO2 additives is not coherent rotation but appears to be the curling mode. The origin of the high coercivity of BaM:SiO2 films is different from that of Al-substituted Ba ferrite films. It seemed that SiO2 additives and the defects caused by them decreased Ms and prevented the expansion of reversed domains in the magnetization reversal process, similarly to some pinning effects, and caused high Hc⊥ of 4.2-5.1 kOe in BaM:SiO2 films.

  • Simulation of Magnetic Recording Process of Amorphous Continuous Media

    Eiichi MIYASHITA  Kiyoshi KUGA  Ryo TAGUCHI  Takahito TAMAKI  Haruo OKUDA  

     
    PAPER

      Vol:
    E83-C No:9
      Page(s):
    1505-1510

    It is known that amorphous continuous media such as TbFeCo have extremely low noise characteristics because of the structure of the continuous grainless medium. There is great interest in the use of amorphous media in magnetic recording. This study investigated the recording characteristics of the amorphous continuous medium by computer simulation using the Landau-Lifshitz-Gilbert equation. It was shown that the transition of the continuous medium is very sharp and the noise level very low. It was also shown that the recorded magnetization patterns of the continuous medium are distinct at the high recording density of 380 Gbit/inch2. We concluded that the continuous medium has great potential for use in ultra-high density recording.

  • Effects of Alloying Element in Cr-Based Underlayer on Magnetic Properties of Co-Cr-Pt Media

    Nobuyuki INABA  Masaaki FUTAMOTO  

     
    PAPER

      Vol:
    E83-C No:9
      Page(s):
    1467-1472

    Magnetic layer thickness dependences of magnetic properties are investigated for Co-Cr-Pt polycrystalline thin films with different Cr-alloy underlayers (Cr-Ti, Cr-W, Cr-Mo, Cr-V, Cr-Mo-V). The specimens with Cr-Ti, Cr-V, and Cr-Mo-V underlayers show higher coercivities by about 30% and lower activation magnetic moments than those with Cr-Mo underlayer. The effective diameter of activation volume increases by 10-20% when the magnetic layer thickness is decreased from 12 to 8 nm. Temperature dependences of magnetic properties are also determined and discussed by referring to the data obtained using single crystal magnetic thin films with similar composition.

  • Transition of Magnetization Direction in AS-MO Disks

    Junji HIROKANE  Yoshiteru MURAKAMI  Akira TAKAHASHI  Shigeo TERASHIMA  

     
    INVITED PAPER

      Vol:
    E82-C No:12
      Page(s):
    2117-2124

    A standard of Advanced Storage Magneto Optical (AS-MO) having a 6 Gbyte capacity in a 120 mm-diameter single side disk was established by using a magnetically induced superresolution readout method. Transition from in-plane to perpendicular magnetization for exchange-coupled readout layer (GdFeCo) and in-plane magnetization mask layer (GdFe) of the AS-MO disk has been investigated using the noncontinuous model. The readout resolution was sensitive to the thickness of the readout layer. To evaluate readout characteristics of AS-MO disks, the simulation using micro magnetics model was performed and the readout layers were designed. The readout characteristics of the AS-MO disk is improved by making the readout layer thinner.

  • Thermal Stability Study for Anisotropic and Isotropic Hard Disk Media

    Lea Peng TAN  Jian Ping WANG  

     
    PAPER

      Vol:
    E82-C No:12
      Page(s):
    2171-2175

    Thermal stability of anisotropic and isotropic Co alloy thin-film media is investigated. The orientation ratio of CoCrTa(Pt)/Cr media was controlled by the mechanical texture of the NiP/Al substrates. Bulk magnetic properties, delta M curves and time decay of magnetization in the circumferential and radial directions were measured. The maximum magnetic viscosity coefficient calculated from the time decay of magnetization in the circumferential direction was higher than that in the radial direction for a mechanically textured sample, while it was similar in both directions for a non-textured sample. The magnetic viscosity coefficient in the circumferential direction is smaller than that in the radial direction when the reverse field is in the range of the demagnetization field for thin-film recording media. This implies that an anisotropic sample (namely, a sample with a high orientation ratio) will be more thermally stable when it is not exposed to a large external magnetic field.

  • Time Dependence of Magnetic Properties in Perpendicular Recording Media

    Naoki HONDA  Kazuhiro OUCHI  

     
    PAPER

      Vol:
    E80-C No:9
      Page(s):
    1180-1186

    Time decay of magnetic properties in perpendicular magnetic recording media was studied. It was suggested that magnetization in media with a low energy ratio, KV/kT, of 50 is thermally stable in the absence of a demagnetizing field while coercivity exhibits a large time dependence. Magnetization in perpendicular recording media exhibited an appreciable time decay even for films with a large energy ratio of 300. The decay is attributed to the small perpendicular squareness due to a large perpendicular demagnetizing field acting in the media. The recording density dependence of the time decay in the output was explained in terms of the change in the demagnetizing field with the density. It is concluded that the use of media with large squareness as well as large energy ratio effectively reduces time decay in the output.

  • Thermally Controlled Magnetization Actuator for Microrelays

    Etsu HASHIMOTO  Hidenao TANAKA  Yoshio SUZUKI  Yuji UENISHI  Akinori WATABE  

     
    PAPER-Actuator

      Vol:
    E80-C No:2
      Page(s):
    239-245

    A thermally controlled magnetization actuator (TCMA) is proposed for micro-mechanical relays. It is actuated by changing the local magnetization of the structure by remote heating using a laser beam. It is fabricated by nickel surface micromachining (a fabrication technique using nickel electroplating). The optical power of the laser diode used to drive the TCMA is about 30 mW. The switching time of the microrelay was experimentally measured to be 10 ms, the same as that of a conventional mechanical relay. The contact force was calculated to be 20 µN, which can be improved by increasing the size of the TCMA.