1-12hit |
Honai UEOKA Takehiro SATO Eiji OKI
Multi-core fiber (MCF) is one of the promising space-division multiplexing technologies to increase the capacity of optical networks. MCF-based networks have two challenges. One is the inter-core crosstalk (XT) that degrades the quality of optical signals in two neighboring fiber cores. The other is network protection against link failures that cause massive data loss. One way to protect against multiple link failures is to prepare physically separated links as a backup network. Probabilistic protection improves the efficiency of protection by allowing a certain probability of protection failure. Existing studies on backup network design with probabilistic protection do not target MCF-based networks, which raises problems such as protection failure due to the inter-core XT and excessive consumption of optical resources. To address these problems, this paper proposes a XT-aware backup network design model for the MCF optical path networks. The proposed model protects the network against probabilistic multiple link failures. We adopt probabilistic protection that allows a certain probability of protection failure due to the inter-core XT and minimizes the required number of links in the backup network. We present an algorithm to satisfy the probabilistic protection requirement and formulate the model as an integer linear programming problem. We develop a heuristic approach to apply the proposed model to larger networks. Numerical results observe that the proposed model requires fewer links than the dedicated allocation model, which provisions the backup paths in the same manner as the primary paths.
Masato YOSHIDA Kozo SATO Toshihiko HIROOKA Keisuke KASAI Masataka NAKAZAWA
We present detailed measurements and analysis of the guided acoustic wave Brillouin scattering (GAWBS)-induced depolarization noise in a multi-core fiber (MCF) used for a digital coherent optical transmission. We first describe the GAWBS-induced depolarization noise in an uncoupled four-core fiber (4CF) with a 125μm cladding and compare the depolarization noise spectrum with that of a standard single-mode fiber (SSMF). We found that off-center cores in the 4CF are dominantly affected by higher-order TRn,m modes rather than the TR2,m mode unlike in the center core, and the total power of the depolarization noise in the 4CF was almost the same as that in the SSMF. We also report measurement results for the GAWBS-induced depolarization noise in an uncoupled 19-core fiber with a 240μm cladding. The results indicate that the amounts of depolarization noise generated in the cores are almost identical. Finally, we evaluate the influence of GAWBS-induced polarization crosstalk (XT) on a coherent QAM transmission. We found that the XT limits the achievable multiplicity of the QAM signal to 64 in a transoceanic transmission with an MCF.
Yuto SAGAE Takashi MATSUI Taiji SAKAMOTO Kazuhide NAKAJIMA
We propose an ultra-low inter-core crosstalk (XT) multi-core fiber (MCF) with standard 125-μm cladding. We show the fiber design and fabrication results of an MCF housing four cores with W-shaped index profile; it offers XT of less than -67dB/km over the whole C+L band. This enables us to realize 10,000-km transmission with negligible XT penalty. We also observe a low-loss of 0.17dB/km (average) at a wavelength of 1.55μm and other optical properties compatible with ITU-T G.654.B fiber. We also elucidate its good micro-bend resistance in terms of both the loss and XT to confirm its applicability to high-density optical fiber cables. Finally, we show that the fabricated MCF is feasible along with long-distance transmission by confirming that the XT noise performance corresponds to transmission distances of 10,000km or more.
The potential transmission capacity of a standard single-mode fiber peaks at around 100Tb/s owing to fiber nonlinearity and the bandwidth limitation of amplifiers. As the last frontier of multiplexing, space-division multiplexing (SDM) has been studied intensively in recent years. Although there is still time to deploy such a novel fiber communication infrastructure; basic research on SDM has been carried out. Therefore, a comprehensive review is worthwhile at this time toward further practical investigations.
The history of optical fiber and optical transmission technologies has been described in many publications. However, the history of other technologies designed to support the physical layer of optical transmission has not been described in much detail. I would like to highlight those technologies in addition to optical fibers. Therefore, this paper describes the history of the development of optical fiber related technologies such as fusion splicers, optical fiber connectors, ribbon fiber, and passive components based on changes in optical fibers and optical fiber cables. Moreover, I describe technologies designed to support multi-core fibers such as fan-in/fan-out devices.
Toshio MORIOKA Yoshinari AWAJI Yuichi MATSUSHIMA Takeshi KAMIYA
Research efforts initiated by the EXAT Initiative are described to realize Exabit/s optical communications, utilizing the 3M technologies, i.e. multi-core fiber, multi-mode control and multi-level modulation.
Masatoshi TANAKA Masayoshi HACHIWAKA Hirokazu TANIGUCHI
Fan-in/fan-out devices are necessary for the construction of multi-core fiber communication systems. A fan-out device using a capillary is proposed and made by connecting a tapered fiber bundle and a multi-core fiber. The tapered fiber bundle is elongated so that the core arrangement and the mode field diameter (MFD) of single-core fibers agree with those of the multi-core fiber. Suppressing the MFD change is necessary to reduce the coupling loss of the fan-out device. While elongating the fiber bundle, the MFD decreases at the beginning until the core reaches a certain core diameter, and then it begins to increase. We suppress the MFD change of the fan-out device by using this phenomenon. The average insertion loss at both ends of a multi-core fiber was approximately 1.6dB when the fabricated fan-in/fan-out devices were connected to the multi-core fiber.
Hidehiko TAKARA Tetsuo TAKAHASHI Kazuhide NAKAJIMA Yutaka MIYAMOTO
The paper presents ultra-high-capacity transmission technologies based on multi-core space-division-multiplexing. In order to realize high-capacity multi-core fiber (MCF) transmission, investigation of low crosstalk fiber and connection technology is important, and high-density signal generation using multilevel modulation and crosstalk management are also key technologies. 1Pb/s multi-core fiber transmission experiment using space-division-multiplexing is also described.
Tetsuya HAYASHI Takashi SASAKI Eisuke SASAOKA
The stochastic behavior of inter-core crosstalk in multi-core fiber is discussed based on a theoretical model validated by measurements, and the effect of the crosstalk on the Q-factor in transmission systems, using multi-core fiber is investigated theoretically. The measurements show that the crosstalk rapidly changes with wavelength, and gradually changes with time, in obedience to the Gaussian distribution in I-Q planes. Therefore, the behavior of the crosstalk as a noise may depend on the bandwidth of the signal light. If the bandwidth is adequately broad, the crosstalk may behave as a virtual additive white Gaussian noise on I-Q planes, and the Q-penalty at the Q-factor of 9.8dB is less than 1dB when the statistical mean of the crosstalk from other cores is less than -16.7dB for PDM-QPSK, -23.7dB for PDM-16QAM, and -29.9dB for PDM-64QAM. If the bandwidth is adequately narrow, the crosstalk may behave as virtually static coupling that changes very gradually with time and heavily depends on the wavelength. To cope with a static crosstalk much higher than its statistical mean, a margin of several decibels from the mean crosstalk may be necessary for suppressing Q-penalty in the case of adequately narrow bandwidth.
Makoto YAMADA Masaharu UNO Hirotaka ONO
We propose a new configuration for a parallel fiber amplifier that can amplify both the C- and L-bands simultaneously by employing bundled Er3+-doped fiber (EDF). The bundled EDF is a candidate amplification medium for multi-core optical fiber amplifiers. Our parallel fiber amplifier is another application of the multi-core amplification medium. The amplifier achieves almost the same signal gain of 20 dB for both the C- and L-bands by using a bundled EDF, which is realized by bundling seven identical single-core EDFs.
Katsuhiro TAKENAGA Yoko ARAKAWA Shoji TANIGAWA Ning GUAN Shoichiro MATSUO Kunimasa SAITOH Masanori KOSHIBA
The length dependence of the crosstalk in multi-core fibers has been investigated by introducing random fluctuation along longitudinal direction. The power coupling coefficients in the coupled-power theory in heterogeneous multi-core fiber with seven cores were estimated based on consideration of the power coupling coefficients of the homogeneous multi-core fiber. The crosstalk can be quantitatively evaluated by employing coupled-power theory instead of coupled-mode theory.
Kazunori MUKASA Katsunori IMAMURA Yukihiro TSUCHIDA Ryuichi SUGIZAKI
This paper describes recent developments of photonic crystal fibers (PCFs), which can realize ultra wide-band transmission or large Aeff, as well as photonic crystal multi-core fibers (PC-MCFs), which have large potentials as future high-capacity transmission lines using Space Division Multiplexing.