The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] multi-object(34hit)

1-20hit(34hit)

  • DETrack: Multi-Object Tracking Algorithm Based on Feature Decomposition and Feature Enhancement Open Access

    Feng WEN  Haixin HUANG  Xiangyang YIN  Junguang MA  Xiaojie HU  

     
    PAPER-Neural Networks and Bioengineering

      Pubricized:
    2024/04/22
      Vol:
    E107-A No:9
      Page(s):
    1522-1533

    Multi-object tracking (MOT) algorithms are typically classified as one-shot or two-step algorithms. The one-shot MOT algorithm is widely studied and applied due to its fast inference speed. However, one-shot algorithms include two sub-tasks of detection and re-ID, which have conflicting directions for model optimization, thus limiting tracking performance. Additionally, MOT algorithms often suffer from serious ID switching issues, which can negatively affect the tracking effect. To address these challenges, this study proposes the DETrack algorithm, which consists of feature decomposition and feature enhancement modules. The feature decomposition module can effectively exploit the differences and correlations of different tasks to solve the conflict problem. Moreover, it can effectively mitigate the competition between the detection and re-ID tasks, while simultaneously enhancing their cooperation. The feature enhancement module can improve feature quality and alleviate the problem of target ID switching. Experimental results demonstrate that DETrack has achieved improvements in multi-object tracking performance, while reducing the number of ID switching. The designed method of feature decomposition and feature enhancement can significantly enhance target tracking effectiveness.

  • Multi-Objective Design of EMI Filter with Uncertain Parameters by Preference Set-Based Design Method and Polynomial Chaos Method

    Duc Chinh BUI  Yoshiki KAYANO  Fengchao XIAO  Yoshio KAMI  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2023/06/30
      Vol:
    E106-B No:10
      Page(s):
    959-968

    Today's electronic devices must meet many requirements, such as those related to performance, limits to the radiated electromagnetic field, size, etc. For such a design, the requirement is to have a solution that simultaneously meets multiple objectives that sometimes include conflicting requirements. In addition, it is also necessary to consider uncertain parameters. This paper proposes a new combination of statistical analysis using the Polynomial Chaos (PC) method for dealing with the random and multi-objective satisfactory design using the Preference Set-based Design (PSD) method. The application in this paper is an Electromagnetic Interference (EMI) filter for a practical case, which includes plural element parameters and uncertain parameters, which are resistors at the source and load, and the performances of the attenuation characteristics. The PC method generates simulation data with high enough accuracy and good computational efficiency, and these data are used as initial data for the meta-modeling of the PSD method. The design parameters of the EMI filter, which satisfy required performances, are obtained in a range by the PSD method. The authors demonstrate the validity of the proposed method. The results show that applying a multi-objective design method using PSD with a statistical method using PC to handle the uncertain problem can be applied to electromagnetic designs to reduce the time and cost of product development.

  • Industry 4.0 Based Business Process Re-Engineering Framework for Manufacturing Industry Setup Incorporating Evolutionary Multi-Objective Optimization

    Anum TARIQ  Shoab AHMED KHAN  

     
    PAPER-Software Engineering

      Pubricized:
    2022/04/08
      Vol:
    E105-D No:7
      Page(s):
    1283-1295

    Manufacturers are coping with increasing pressures in quality, cost and efficiency as more and more industries are moving from traditional setup to industry 4.0 based digitally transformed setup due to its numerous playbacks. Within the manufacturing domain organizational structures and processes are complex, therefore adopting industry 4.0 and finding an optimized re-engineered business process is difficult without using a systematic methodology. Authors have developed Business Process Re-engineering (BPR) and Business Process Optimization (BPO) methods but no consolidated methodology have been seen in the literature that is based on industry 4.0 and incorporates both the BPR and BPO. We have presented a consolidated and systematic re-engineering and optimization framework for a manufacturing industry setup. The proposed framework performs Evolutionary Multi-Objective Combinatorial Optimization using Multi-Objective Genetic Algorithm (MOGA). An example process from an aircraft manufacturing factory has been optimized and re-engineered with available set of technologies from industry 4.0 based on the criteria of lower cost, reduced processing time and reduced error rate. At the end to validate the proposed framework Business Process Model and Notation (BPMN) is used for simulations and perform comparison between AS-IS and TO-BE processes as it is widely used standard for business process specification. The proposed framework will be used in converting an industry from traditional setup to industry 4.0 resulting in cost reduction, increased performance and quality.

  • Multi-Objective Ant Lion Optimizer Based on Time Weight

    Yi LIU  Wei QIN  Jinhui ZHANG  Mengmeng LI  Qibin ZHENG  Jichuan WANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/03/11
      Vol:
    E104-D No:6
      Page(s):
    901-904

    Multi-objective evolutionary algorithms are widely used in many engineering optimization problems and artificial intelligence applications. Ant lion optimizer is an outstanding evolutionary method, but two issues need to be solved to extend it to the multi-objective optimization field, one is how to update the Pareto archive, and the other is how to choose elite and ant lions from archive. We develop a novel multi-objective variant of ant lion optimizer in this paper. A new measure combining Pareto dominance relation and distance information of individuals is put forward and used to tackle the first issue. The concept of time weight is developed to handle the second problem. Besides, mutation operation is adopted on solutions in middle part of archive to further improve its performance. Eleven functions, other four algorithms and four indicators are taken to evaluate the new method. The results show that proposed algorithm has better performance and lower time complexity.

  • Retinex-Based Image Enhancement with Particle Swarm Optimization and Multi-Objective Function

    Farzin MATIN  Yoosoo JEONG  Hanhoon PARK  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2020/09/15
      Vol:
    E103-D No:12
      Page(s):
    2721-2724

    Multiscale retinex is one of the most popular image enhancement methods. However, its control parameters, such as Gaussian kernel sizes, gain, and offset, should be tuned carefully according to the image contents. In this letter, we propose a new method that optimizes the parameters using practical swarm optimization and multi-objective function. The method iteratively verifies the visual quality (i.e. brightness, contrast, and colorfulness) of the enhanced image using a multi-objective function while subtly adjusting the parameters. Experimental results shows that the proposed method achieves better image quality qualitatively and quantitatively compared with other image enhancement methods.

  • A Multiobjective Optimization Dispatch Method of Wind-Thermal Power System

    Xiaoxuan GUO  Renxi GONG  Haibo BAO  Zhenkun LU  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2020/09/18
      Vol:
    E103-D No:12
      Page(s):
    2549-2558

    It is well known that the large-scale access of wind power to the power system will affect the economic and environmental objectives of power generation scheduling, and also bring new challenges to the traditional deterministic power generation scheduling because of the intermittency and randomness of wind power. In order to deal with these problems, a multiobjective optimization dispatch method of wind-thermal power system is proposed. The method can be described as follows: A multiobjective interval power generation scheduling model of wind-thermal power system is firstly established by describing the wind speed on wind farm as an interval variable, and the minimization of fuel cost and pollution gas emission cost of thermal power unit is chosen as the objective functions. And then, the optimistic and pessimistic Pareto frontiers of the multi-objective interval power generation scheduling are obtained by utilizing an improved normal boundary intersection method with a normal boundary intersection (NBI) combining with a bilevel optimization method to solve the model. Finally, the optimistic and pessimistic compromise solutions is determined by a distance evaluation method. The calculation results of the 16-unit 174-bus system show that by the proposed method, a uniform optimistic and pessimistic Pareto frontier can be obtained, the analysis of the impact of wind speed interval uncertainty on the economic and environmental indicators can be quantified. In addition, it has been verified that the Pareto front in the actual scenario is distributed between the optimistic and pessimistic Pareto front, and the influence of different wind power access levels on the optimistic and pessimistic Pareto fronts is analyzed.

  • Joint Energy-Efficiency and Throughput Optimization with Admission Control and Resource Allocation in Cognitive Radio Networks

    Jain-Shing LIU  Chun-Hung LIN  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2019/07/26
      Vol:
    E103-B No:2
      Page(s):
    139-147

    In this work, we address a joint energy efficiency (EE) and throughput optimization problem in interweave cognitive radio networks (CRNs) subject to scheduling, power, and stability constraints, which could be solved through traffic admission control, channel allocation, and power allocation. Specifically, the joint objective is to concurrently optimize the system EE and the throughput of secondary user (SU), while satisfying the minimum throughput requirement of primary user (PU), the throughput constraint of SU, and the scheduling and power control constraints that must be considered. To achieve these goals, our algorithm independently and simultaneously makes control decisions on admission and transmission to maximize a joint utility of EE and throughput under time-varying conditions of channel and traffic without a priori knowledge. Specially, the proposed scheduling algorithm has polynomial time efficiency, and the power control algorithms as well as the admission control algorithm involved are simply threshold-based and thus very computationally efficient. Finally, numerical analyses show that our proposals achieve both system stability and optimal utility.

  • On the Competitive Analysis for the Multi-Objective Time Series Search Problem

    Toshiya ITOH  Yoshinori TAKEI  

     
    PAPER-Optimization

      Vol:
    E102-A No:9
      Page(s):
    1150-1158

    For the multi-objective time series search problem, Hasegawa and Itoh [Theoretical Computer Science, Vol.78, pp.58-66, 2018] presented the best possible online algorithm balanced price policy for any monotone function f:Rk→R. Specifically the competitive ratio with respect to the monotone function f(c1,...,ck)=(c1+…+ck)/k is referred to as the arithmetic mean component competitive ratio. Hasegawa and Itoh derived the explicit representation of the arithmetic mean component competitive ratio for k=2, but it has not been known for any integer k≥3. In this paper, we derive the explicit representations of the arithmetic mean component competitive ratio for k=3 and k=4, respectively. On the other hand, we show that it is computationally difficult to derive the explicit representation of the arithmetic mean component competitive ratio for arbitrary integer k in a way similar to the cases for k=2, 3, and 4.

  • Fast Enumeration of All Pareto-Optimal Solutions for 0-1 Multi-Objective Knapsack Problems Using ZDDs

    Hirofumi SUZUKI  Shin-ichi MINATO  

     
    PAPER

      Vol:
    E101-A No:9
      Page(s):
    1375-1382

    Finding Pareto-optimal solutions is a basic approach in multi-objective combinatorial optimization. In this paper, we focus on the 0-1 multi-objective knapsack problem, and present an algorithm to enumerate all its Pareto-optimal solutions, which improves upon the method proposed by Bazgan et al. Our algorithm is based on dynamic programming techniques using an efficient data structure called zero-suppressed binary decision diagram (ZDD), which handles a set of combinations compactly. In our algorithm, we utilize ZDDs for storing all the feasible solutions compactly, and pruning inessential partial solutions as quickly as possible. As an output of the algorithm, we can obtain a useful ZDD indexing all the Pareto-optimal solutions. The results of our experiments show that our algorithm is faster than the previous method for various types of three- and four-objective instances, which are difficult problems to solve.

  • Distributed Pareto Local Search for Multi-Objective DCOPs

    Maxime CLEMENT  Tenda OKIMOTO  Katsumi INOUE  

     
    PAPER-Information Network

      Pubricized:
    2017/09/15
      Vol:
    E100-D No:12
      Page(s):
    2897-2905

    Many real world optimization problems involving sets of agents can be modeled as Distributed Constraint Optimization Problems (DCOPs). A DCOP is defined as a set of variables taking values from finite domains, and a set of constraints that yield costs based on the variables' values. Agents are in charge of the variables and must communicate to find a solution minimizing the sum of costs over all constraints. Many applications of DCOPs include multiple criteria. For example, mobile sensor networks must optimize the quality of the measurements and the quality of communication between the agents. This introduces trade-offs between solutions that are compared using the concept of Pareto dominance. Multi-Objective Distributed Constraint Optimization Problems (MO-DCOPs) are used to model such problems where the goal is to find the set of Pareto optimal solutions. This set being exponential in the number of variables, it is important to consider fast approximation algorithms for MO-DCOPs. The bounded multi-objective max-sum (B-MOMS) algorithm is the first and only existing approximation algorithm for MO-DCOPs and is suited for solving a less-constrained problem. In this paper, we propose a novel approximation MO-DCOP algorithm called Distributed Pareto Local Search (DPLS) that uses a local search approach to find an approximation of the set of Pareto optimal solutions. DPLS provides a distributed version of an existing centralized algorithm by complying with the communication limitations and the privacy concerns of multi-agent systems. Experiments on a multi-objective extension of the graph-coloring problem show that DPLS finds significantly better solutions than B-MOMS for problems with medium to high constraint density while requiring a similar runtime.

  • A Spectrum-Sharing Approach in Heterogeneous Networks Based on Multi-Objective Optimization

    Runze WU  Jiajia ZHU  Liangrui TANG  Chen XU  Xin WU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/12/27
      Vol:
    E100-B No:7
      Page(s):
    1145-1151

    Deploying low power nodes (LPNs), which reuse the spectrum licensed to a macrocell network, is considered to be a promising way to significantly boost network capacity. Due to the spectrum-sharing, the deployment of LPNs could trigger the severe problem of interference including intra-tier interference among dense LPNs and inter-tier interference between LPNs and the macro base station (MBS), which influences the system performance strongly. In this paper, we investigate a spectrum-sharing approach in the downlink for two-tier networks, which consists of small cells (SCs) with several LPNs and a macrocell with a MBS, aiming to mitigate the interference and improve the capacity of SCs. The spectrum-sharing approach is described as a multi-objective optimization problem. The problem is solved by the nondominated sorting genetic algorithm version II (NSGA-II), and the simulations show that the proposed spectrum-sharing approach is superior to the existing one.

  • An Efficient Algorithm of Discrete Particle Swarm Optimization for Multi-Objective Task Assignment

    Nannan QIAO  Jiali YOU  Yiqiang SHENG  Jinlin WANG  Haojiang DENG  

     
    PAPER-Distributed system

      Pubricized:
    2016/08/24
      Vol:
    E99-D No:12
      Page(s):
    2968-2977

    In this paper, a discrete particle swarm optimization method is proposed to solve the multi-objective task assignment problem in distributed environment. The objectives of optimization include the makespan for task execution and the budget caused by resource occupation. A two-stage approach is designed as follows. In the first stage, several artificial particles are added into the initialized swarm to guide the search direction. In the second stage, we redefine the operators of the discrete PSO to implement addition, subtraction and multiplication. Besides, a fuzzy-cost-based elite selection is used to improve the computational efficiency. Evaluation shows that the proposed algorithm achieves Pareto improvement in comparison to the state-of-the-art algorithms.

  • Multiple Object Segmentation in Videos Using Max-Flow Decomposition

    Yihang BO  Hao JIANG  

     
    PAPER-Vision

      Vol:
    E99-A No:12
      Page(s):
    2547-2557

    In this paper, we propose a novel decomposition method to segment multiple object regions simultaneously in cluttered videos. This method formulates object regions segmentation as a labeling problem in which we assign object IDs to the superpixels in a sequence of video frames so that the unary color matching cost is low, the assignment induces compact segments, and the superpixel labeling is consistent through time. Multi-object segmentation in a video is a combinatorial problem. We propose a binary linear formulation. Since the integer linear programming is hard to solve directly, we relax it and further decompose the relaxation into a sequence of much simpler max-flow problems. The proposed method is guaranteed to converge in a finite number of steps to the global optimum of the relaxation. It also has a high chance to obtain all integer solution and therefore achieves the global optimum. The rounding of the relaxation result gives an N-approximation solution, where N is the number of objects. Comparing to directly solving the integer program, the novel decomposition method speeds up the computation by orders of magnitude. Our experiments show that the proposed method is robust against object pose variation, occlusion and is more accurate than the competing methods while at the same time maintains the efficiency.

  • An Improved PSO Algorithm for Interval Multi-Objective Optimization Systems

    Yong ZHANG  Wanqiu ZHANG  Dunwei GONG  Yinan GUO  Leida LI  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2016/06/01
      Vol:
    E99-D No:9
      Page(s):
    2381-2384

    Considering an uncertain multi-objective optimization system with interval coefficients, this letter proposes an interval multi-objective particle swarm optimization algorithm. In order to improve its performance, a crowding distance measure based on the distance and the overlap degree of intervals, and a method of updating the archive based on the acceptance coefficient of decision-maker, are employed. Finally, results show that our algorithm is capable of generating excellent approximation of the true Pareto front.

  • An Efficient and Universal Conical Hypervolume Evolutionary Algorithm in Three or Higher Dimensional Objective Space

    Weiqin YING  Yuehong XIE  Xing XU  Yu WU  An XU  Zhenyu WANG  

     
    LETTER-Numerical Analysis and Optimization

      Vol:
    E98-A No:11
      Page(s):
    2330-2335

    The conical area evolutionary algorithm (CAEA) has a very high run-time efficiency for bi-objective optimization, but it can not tackle problems with more than two objectives. In this letter, a conical hypervolume evolutionary algorithm (CHEA) is proposed to extend the CAEA to a higher dimensional objective space. CHEA partitions objective spaces into a series of conical subregions and retains only one elitist individual for every subregion within a compact elitist archive. Additionally, each offspring needs to be compared only with the elitist individual in the same subregion in terms of the local hypervolume scalar indicator. Experimental results on 5-objective test problems have revealed that CHEA can obtain the satisfactory overall performance on both run-time efficiency and solution quality.

  • Manage the Tradeoff in Data Sanitization

    Peng CHENG  Chun-Wei LIN  Jeng-Shyang PAN  Ivan LEE  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2015/07/14
      Vol:
    E98-D No:10
      Page(s):
    1856-1860

    Sharing data might bring the risk of disclosing the sensitive knowledge in it. Usually, the data owner may choose to sanitize data by modifying some items in it to hide sensitive knowledge prior to sharing. This paper focuses on protecting sensitive knowledge in the form of frequent itemsets by data sanitization. The sanitization process may result in side effects, i.e., the data distortion and the damage to the non-sensitive frequent itemsets. How to minimize these side effects is a challenging problem faced by the research community. Actually, there is a trade-off when trying to minimize both side effects simultaneously. In view of this, we propose a data sanitization method based on evolutionary multi-objective optimization (EMO). This method can hide specified sensitive itemsets completely while minimizing the accompanying side effects. Experiments on real datasets show that the proposed approach is very effective in performing the hiding task with fewer damage to the original data and non-sensitive knowledge.

  • An Accident Severity Classification Model Based on Multi-Objective Particle Swarm Optimization

    Chunlu WANG  Chenye QIU  Xingquan ZUO  Chuanyi LIU  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E97-D No:11
      Page(s):
    2863-2871

    Reducing accident severity is an effective way to improve road safety. In the literature of accident severity analysis, two main disadvantages exist: most studies use classification accuracy to measure the quality of a classifier which is not appropriate in the condition of unbalanced dataset; the other is the results are not easy to be interpreted by users. Aiming at these drawbacks, a novel multi-objective particle swarm optimization (MOPSO) method is proposed to identify the contributing factors that impact accident severity. By employing Pareto dominance concept, a set of Pareto optimal rules can be obtained by MOPSO automatically, without any pre-defined threshold or variables. Then the rules are used to form a non-ordered classifier. A MOPSO is applied to discover a set of Pareto optimal rules. The accident data of Beijing between 2008 and 2010 are used to build the model. The proposed approach is compared with several rule learning algorithms. The results show the proposed approach can generate a set of accurate and comprehensible rules which can indicate the relationship between risk factors and accident severity.

  • Cooperative Power Allocation Based on Multi-Objective Intelligent Optimization for Multi-Source Multi-Relay Networks

    Tian LIANG  Wei HENG  Chao MENG  Guodong ZHANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:9
      Page(s):
    1938-1946

    In this paper, we consider multi-source multi-relay power allocation in cooperative wireless networks. A new intelligent optimization algorithm, multi-objective free search (MOFS), is proposed to efficiently allocate cooperative relay power to better support multiple sources transmission. The existence of Pareto optimal solutions is analyzed for the proposed multi-objective power allocation model when the objectives conflict with each other, and the MOFS algorithm is validated using several test functions and metrics taken from the standard literature on evolutionary multi-objective optimization. Simulation results show that the proposed scheme can effectively get the potential optimal solutions of multi-objective power allocation problem, and it can effectively optimize the tradeoff between network sum-rate and fairness in different applications by selection of the corresponding solution.

  • Automatic SfM-Based 2D-to-3D Conversion for Multi-Object Scenes

    Hak Gu KIM  Jin-ku KANG  Byung Cheol SONG  

     
    LETTER-Image

      Vol:
    E97-A No:5
      Page(s):
    1159-1161

    This letter presents an automatic 2D-to-3D conversion method using a structure from motion (SfM) process for multi-object scenes. The foreground and background regions may have different depth values in an image. First, we detect the foreground objects and the background by using a depth histogram. Then, the proposed method creates the virtual image by projecting each region with its computed projective matrix. Experimental results compared to previous research show that the proposed method provides realistic stereoscopic images.

  • Energy- and Traffic-Balance-Aware Mapping Algorithm for Network-on-Chip

    Zhi DENG  Huaxi GU  Yingtang YANG  Hua YOU  

     
    LETTER-Computer System

      Vol:
    E96-D No:3
      Page(s):
    719-722

    In this paper, an energy- and traffic-balance-aware mapping algorithm from IP cores to nodes in a network is proposed for application-specific Network-on-Chip(NoC). The multi-objective optimization model is set up by considering the NoC architecture, and addressed by the proposed mapping algorithm that decomposes mapping optimization into a number of scalar subproblems simultaneously. In order to show performance of the proposed algorithm, the application specific benchmark is applied in the simulation. The experimental results demonstrate that the algorithm has advantages in energy consumption and traffic balance over other algorithms.

1-20hit(34hit)