The search functionality is under construction.

Keyword Search Result

[Keyword] neural network(855hit)

1-20hit(855hit)

  • Channel Pruning via Improved Grey Wolf Optimizer Pruner Open Access

    Xueying WANG  Yuan HUANG  Xin LONG  Ziji MA  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2024/03/07
      Vol:
    E107-D No:7
      Page(s):
    894-897

    In recent years, the increasing complexity of deep network structures has hindered their application in small resource constrained hardware. Therefore, we urgently need to compress and accelerate deep network models. Channel pruning is an effective method to compress deep neural networks. However, most existing channel pruning methods are prone to falling into local optima. In this paper, we propose a channel pruning method via Improved Grey Wolf Optimizer Pruner which called IGWO-Pruner to prune redundant channels of convolutional neural networks. It identifies pruning ratio of each layer by using Improved Grey Wolf algorithm, and then fine-tuning the new pruned network model. In experimental section, we evaluate the proposed method in CIFAR datasets and ILSVRC-2012 with several classical networks, including VGGNet, GoogLeNet and ResNet-18/34/56/152, and experimental results demonstrate the proposed method is able to prune a large number of redundant channels and parameters with rare performance loss.

  • Dual-Path Convolutional Neural Network Based on Band Interaction Block for Acoustic Scene Classification Open Access

    Pengxu JIANG  Yang YANG  Yue XIE  Cairong ZOU  Qingyun WANG  

     
    LETTER-Engineering Acoustics

      Pubricized:
    2023/10/04
      Vol:
    E107-A No:7
      Page(s):
    1040-1044

    Convolutional neural network (CNN) is widely used in acoustic scene classification (ASC) tasks. In most cases, local convolution is utilized to gather time-frequency information between spectrum nodes. It is challenging to adequately express the non-local link between frequency domains in a finite convolution region. In this paper, we propose a dual-path convolutional neural network based on band interaction block (DCNN-bi) for ASC, with mel-spectrogram as the model’s input. We build two parallel CNN paths to learn the high-frequency and low-frequency components of the input feature. Additionally, we have created three band interaction blocks (bi-blocks) to explore the pertinent nodes between various frequency bands, which are connected between two paths. Combining the time-frequency information from two paths, the bi-blocks with three distinct designs acquire non-local information and send it back to the respective paths. The experimental results indicate that the utilization of the bi-block has the potential to improve the initial performance of the CNN substantially. Specifically, when applied to the DCASE 2018 and DCASE 2020 datasets, the CNN exhibited performance improvements of 1.79% and 3.06%, respectively.

  • Federated Learning of Neural ODE Models with Different Iteration Counts Open Access

    Yuto HOSHINO  Hiroki KAWAKAMI  Hiroki MATSUTANI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/02/09
      Vol:
    E107-D No:6
      Page(s):
    781-791

    Federated learning is a distributed machine learning approach in which clients train models locally with their own data and upload them to a server so that their trained results are shared between them without uploading raw data to the server. There are some challenges in federated learning, such as communication size reduction and client heterogeneity. The former can mitigate the communication overheads, and the latter can allow the clients to choose proper models depending on their available compute resources. To address these challenges, in this paper, we utilize Neural ODE based models for federated learning. The proposed flexible federated learning approach can reduce the communication size while aggregating models with different iteration counts or depths. Our contribution is that we experimentally demonstrate that the proposed federated learning can aggregate models with different iteration counts or depths. It is compared with a different federated learning approach in terms of the accuracy. Furthermore, we show that our approach can reduce communication size by up to 89.4% compared with a baseline ResNet model using CIFAR-10 dataset.

  • A 0.13 mJ/Prediction CIFAR-100 Fully Synthesizable Raster-Scan-Based Wired-Logic Processor in 16-nm FPGA Open Access

    Dongzhu LI  Zhijie ZHAN  Rei SUMIKAWA  Mototsugu HAMADA  Atsutake KOSUGE  Tadahiro KURODA  

     
    PAPER

      Pubricized:
    2023/11/24
      Vol:
    E107-C No:6
      Page(s):
    155-162

    A 0.13mJ/prediction with 68.6% accuracy wired-logic deep neural network (DNN) processor is developed in a single 16-nm field-programmable gate array (FPGA) chip. Compared with conventional von-Neumann architecture DNN processors, the energy efficiency is greatly improved by eliminating DRAM/BRAM access. A technical challenge for conventional wired-logic processors is the large amount of hardware resources required for implementing large-scale neural networks. To implement a large-scale convolutional neural network (CNN) into a single FPGA chip, two technologies are introduced: (1) a sparse neural network known as a non-linear neural network (NNN), and (2) a newly developed raster-scan wired-logic architecture. Furthermore, a novel high-level synthesis (HLS) technique for wired-logic processor is proposed. The proposed HLS technique enables the automatic generation of two key components: (1) Verilog-hardware description language (HDL) code for a raster-scan-based wired-logic processor and (2) test bench code for conducting equivalence checking. The automated process significantly mitigates the time and effort required for implementation and debugging. Compared with the state-of-the-art FPGA-based processor, 238 times better energy efficiency is achieved with only a slight decrease in accuracy on the CIFAR-100 task. In addition, 7 times better energy efficiency is achieved compared with the state-of-the-art network-optimized application-specific integrated circuit (ASIC).

  • LSTM Neural Network Algorithm for Handover Improvement in a Non-Ideal Network Using O-RAN Near-RT RIC Open Access

    Baud Haryo PRANANTO   ISKANDAR   HENDRAWAN  Adit KURNIAWAN  

     
    PAPER-Network Management/Operation

      Vol:
    E107-B No:6
      Page(s):
    458-469

    Handover is an important property of cellular communication that enables the user to move from one cell to another without losing the connection. It is a very crucial process for the quality of the user’s experience because it may interrupt data transmission. Therefore, good handover management is very important in the current and future cellular systems. Several techniques have been employed to improve the handover performance, usually to increase the probability of a successful handover. One of the techniques is predictive handover which predicts the target cell using some methods other than the traditional measurement-based algorithm, including using machine learning. Several studies have been conducted in the implementation of predictive handover, most of them by modifying the internal algorithm of existing network elements, such as the base station. We implemented a predictive handover algorithm using an intelligent node outside the existing network elements to minimize the modification of the network and to create modularity in the system. Using a recently standardized Open Radio Access Network (O-RAN) Near Realtime Radio Intelligent Controller (Near-RT RIC), we created a modular application that can improve the handover performance by determining the target cell using machine learning techniques. In our previous research, we modified The Near-RT RIC original software that is using vector autoregression to determine the target cell by predicting the throughput of each neighboring cell. We also modified the method using a Multi-Layer Perceptron (MLP) neural network. In this paper, we redesigned the neural network using Long Short-Term Memory (LSTM) that can better handle time series data. We proved that our proposed LSTM-based machine learning algorithms used in Near-RT RIC can improve the handover performance compared to the traditional measurement-based algorithm.

  • DNN Aided Joint Source-Channel Decoding Scheme for Polar Codes Open Access

    Qingping YU  You ZHANG  Zhiping SHI  Xingwang LI  Longye WANG  Ming ZENG  

     
    LETTER-Coding Theory

      Pubricized:
    2023/08/23
      Vol:
    E107-A No:5
      Page(s):
    845-849

    In this letter, a deep neural network (DNN) aided joint source-channel (JSCC) decoding scheme is proposed for polar codes. In the proposed scheme, an integrated factor graph with an unfolded structure is first designed. Then a DNN aided flooding belief propagation decoding (FBP) algorithm is proposed based on the integrated factor, in which both source and channel scaling parameters in the BP decoding are optimized for better performance. Experimental results show that, with the proposed DNN aided FBP decoder, the polar coded JSCC scheme can have about 2-2.5 dB gain over different source statistics p with source message length NSC = 128 and 0.2-1 dB gain over different source statistics p with source message length NSC = 512 over the polar coded JSCC system with existing BP decoder.

  • Implementing Optical Analog Computing and Electrooptic Hopfield Network by Silicon Photonic Circuits Open Access

    Guangwei CONG  Noritsugu YAMAMOTO  Takashi INOUE  Yuriko MAEGAMI  Morifumi OHNO  Shota KITA  Rai KOU  Shu NAMIKI  Koji YAMADA  

     
    INVITED PAPER

      Pubricized:
    2024/01/05
      Vol:
    E107-A No:5
      Page(s):
    700-708

    Wide deployment of artificial intelligence (AI) is inducing exponentially growing energy consumption. Traditional digital platforms are becoming difficult to fulfill such ever-growing demands on energy efficiency as well as computing latency, which necessitates the development of high efficiency analog hardware platforms for AI. Recently, optical and electrooptic hybrid computing is reactivated as a promising analog hardware alternative because it can accelerate the information processing in an energy-efficient way. Integrated photonic circuits offer such an analog hardware solution for implementing photonic AI and machine learning. For this purpose, we proposed a photonic analog of support vector machine and experimentally demonstrated low-latency and low-energy classification computing, which evidences the latency and energy advantages of optical analog computing over traditional digital computing. We also proposed an electrooptic Hopfield network for classifying and recognizing time-series data. This paper will review our work on implementing classification computing and Hopfield network by leveraging silicon photonic circuits.

  • Pattern-Based Meta Graph Neural Networks for Argument Classifications Open Access

    Shiyao DING  Takayuki ITO  

     
    PAPER

      Pubricized:
    2023/12/11
      Vol:
    E107-D No:4
      Page(s):
    451-458

    Despite recent advancements in utilizing meta-learning for addressing the generalization challenges of graph neural networks (GNN), their performance in argumentation mining tasks, such as argument classifications, remains relatively limited. This is primarily due to the under-utilization of potential pattern knowledge intrinsic to argumentation structures. To address this issue, our study proposes a two-stage, pattern-based meta-GNN method in contrast to conventional pattern-free meta-GNN approaches. Initially, our method focuses on learning a high-level pattern representation to effectively capture the pattern knowledge within an argumentation structure and then predicts edge types. It then utilizes a meta-learning framework in the second stage, designed to train a meta-learner based on the predicted edge types. This feature allows for rapid generalization to novel argumentation graphs. Through experiments on real English discussion datasets spanning diverse topics, our results demonstrate that our proposed method substantially outperforms conventional pattern-free GNN approaches, signifying a significant stride forward in this domain.

  • Overfitting Problem of ANN- and VSTF-Based Nonlinear Equalizers Trained on Repeated Random Bit Sequences Open Access

    Kai IKUTA  Jinya NAKAMURA  Moriya NAKAMURA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E107-B No:4
      Page(s):
    349-356

    In this paper, we investigated the overfitting characteristics of nonlinear equalizers based on an artificial neural network (ANN) and the Volterra series transfer function (VSTF), which were designed to compensate for optical nonlinear waveform distortion in optical fiber communication systems. Linear waveform distortion caused by, e.g., chromatic dispersion (CD) is commonly compensated by linear equalizers using digital signal processing (DSP) in digital coherent receivers. However, mitigation of nonlinear waveform distortion is considered to be one of the next important issues. An ANN-based nonlinear equalizer is one possible candidate for solving this problem. However, the risk of overfitting of ANNs is one obstacle in using the technology in practical applications. We evaluated and compared the overfitting of ANN- and conventional VSTF-based nonlinear equalizers used to compensate for optical nonlinear distortion. The equalizers were trained on repeated random bit sequences (RRBSs), while varying the length of the bit sequences. When the number of hidden-layer units of the ANN was as large as 100 or 1000, the overfitting characteristics were comparable to those of the VSTF. However, when the number of hidden-layer units was 10, which is usually enough to compensate for optical nonlinear distortion, the overfitting was weaker than that of the VSTF. Furthermore, we confirmed that even commonly used finite impulse response (FIR) filters showed overfitting to the RRBS when the length of the RRBS was equal to or shorter than the length of the tapped delay line of the filters. Conversely, when the RRBS used for the training was sufficiently longer than the tapped delay line, the overfitting could be suppressed, even when using an ANN-based nonlinear equalizer with 10 hidden-layer units.

  • Power Analysis of Floating-Point Operations for Leakage Resistance Evaluation of Neural Network Model Parameters

    Hanae NOZAKI  Kazukuni KOBARA  

     
    PAPER

      Pubricized:
    2023/09/25
      Vol:
    E107-A No:3
      Page(s):
    331-343

    In the field of machine learning security, as one of the attack surfaces especially for edge devices, the application of side-channel analysis such as correlation power/electromagnetic analysis (CPA/CEMA) is expanding. Aiming to evaluate the leakage resistance of neural network (NN) model parameters, i.e. weights and biases, we conducted a feasibility study of CPA/CEMA on floating-point (FP) operations, which are the basic operations of NNs. This paper proposes approaches to recover weights and biases using CPA/CEMA on multiplication and addition operations, respectively. It is essential to take into account the characteristics of the IEEE 754 representation in order to realize the recovery with high precision and efficiency. We show that CPA/CEMA on FP operations requires different approaches than traditional CPA/CEMA on cryptographic implementations such as the AES.

  • Ensemble Malware Classifier Considering PE Section Information

    Ren TAKEUCHI  Rikima MITSUHASHI  Masakatsu NISHIGAKI  Tetsushi OHKI  

     
    PAPER

      Pubricized:
    2023/09/19
      Vol:
    E107-A No:3
      Page(s):
    306-318

    The war between cyber attackers and security analysts is gradually intensifying. Owing to the ease of obtaining and creating support tools, recent malware continues to diversify into variants and new species. This increases the burden on security analysts and hinders quick analysis. Identifying malware families is crucial for efficiently analyzing diversified malware; thus, numerous low-cost, general-purpose, deep-learning-based classification techniques have been proposed in recent years. Among these methods, malware images that represent binary features as images are often used. However, no models or architectures specific to malware classification have been proposed in previous studies. Herein, we conduct a detailed analysis of the behavior and structure of malware and focus on PE sections that capture the unique characteristics of malware. First, we validate the features of each PE section that can distinguish malware families. Then, we identify PE sections that contain adequate features to classify families. Further, we propose an ensemble learning-based classification method that combines features of highly discriminative PE sections to improve classification accuracy. The validation of two datasets confirms that the proposed method improves accuracy over the baseline, thereby emphasizing its importance.

  • Simultaneous Adaptation of Acoustic and Language Models for Emotional Speech Recognition Using Tweet Data

    Tetsuo KOSAKA  Kazuya SAEKI  Yoshitaka AIZAWA  Masaharu KATO  Takashi NOSE  

     
    PAPER

      Pubricized:
    2023/12/05
      Vol:
    E107-D No:3
      Page(s):
    363-373

    Emotional speech recognition is generally considered more difficult than non-emotional speech recognition. The acoustic characteristics of emotional speech differ from those of non-emotional speech. Additionally, acoustic characteristics vary significantly depending on the type and intensity of emotions. Regarding linguistic features, emotional and colloquial expressions are also observed in their utterances. To solve these problems, we aim to improve recognition performance by adapting acoustic and language models to emotional speech. We used Japanese Twitter-based Emotional Speech (JTES) as an emotional speech corpus. This corpus consisted of tweets and had an emotional label assigned to each utterance. Corpus adaptation is possible using the utterances contained in this corpus. However, regarding the language model, the amount of adaptation data is insufficient. To solve this problem, we propose an adaptation of the language model by using online tweet data downloaded from the internet. The sentences used for adaptation were extracted from the tweet data based on certain rules. We extracted the data of 25.86 M words and used them for adaptation. In the recognition experiments, the baseline word error rate was 36.11%, whereas that with the acoustic and language model adaptation was 17.77%. The results demonstrated the effectiveness of the proposed method.

  • Backdoor Attacks on Graph Neural Networks Trained with Data Augmentation

    Shingo YASHIKI  Chako TAKAHASHI  Koutarou SUZUKI  

     
    LETTER

      Pubricized:
    2023/09/05
      Vol:
    E107-A No:3
      Page(s):
    355-358

    This paper investigates the effects of backdoor attacks on graph neural networks (GNNs) trained through simple data augmentation by modifying the edges of the graph in graph classification. The numerical results show that GNNs trained with data augmentation remain vulnerable to backdoor attacks and may even be more vulnerable to such attacks than GNNs without data augmentation.

  • BRsyn-Caps: Chinese Text Classification Using Capsule Network Based on Bert and Dependency Syntax

    Jie LUO  Chengwan HE  Hongwei LUO  

     
    PAPER-Natural Language Processing

      Pubricized:
    2023/11/06
      Vol:
    E107-D No:2
      Page(s):
    212-219

    Text classification is a fundamental task in natural language processing, which finds extensive applications in various domains, such as spam detection and sentiment analysis. Syntactic information can be effectively utilized to improve the performance of neural network models in understanding the semantics of text. The Chinese text exhibits a high degree of syntactic complexity, with individual words often possessing multiple parts of speech. In this paper, we propose BRsyn-caps, a capsule network-based Chinese text classification model that leverages both Bert and dependency syntax. Our proposed approach integrates semantic information through Bert pre-training model for obtaining word representations, extracts contextual information through Long Short-term memory neural network (LSTM), encodes syntactic dependency trees through graph attention neural network, and utilizes capsule network to effectively integrate features for text classification. Additionally, we propose a character-level syntactic dependency tree adjacency matrix construction algorithm, which can introduce syntactic information into character-level representation. Experiments on five datasets demonstrate that BRsyn-caps can effectively integrate semantic, sequential, and syntactic information in text, proving the effectiveness of our proposed method for Chinese text classification.

  • Content-Adaptive Optimization Framework for Universal Deep Image Compression

    Koki TSUBOTA  Kiyoharu AIZAWA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2023/10/24
      Vol:
    E107-D No:2
      Page(s):
    201-211

    While deep image compression performs better than traditional codecs like JPEG on natural images, it faces a challenge as a learning-based approach: compression performance drastically decreases for out-of-domain images. To investigate this problem, we introduce a novel task that we call universal deep image compression, which involves compressing images in arbitrary domains, such as natural images, line drawings, and comics. Furthermore, we propose a content-adaptive optimization framework to tackle this task. This framework adapts a pre-trained compression model to each target image during testing for addressing the domain gap between pre-training and testing. For each input image, we insert adapters into the decoder of the model and optimize the latent representation extracted by the encoder and the adapter parameters in terms of rate-distortion, with the adapter parameters transmitted per image. To achieve the evaluation of the proposed universal deep compression, we constructed a benchmark dataset containing uncompressed images of four domains: natural images, line drawings, comics, and vector arts. We compare our proposed method with non-adaptive and existing adaptive compression methods, and the results show that our method outperforms them. Our code and dataset are publicly available at https://github.com/kktsubota/universal-dic.

  • A CNN-Based Multi-Scale Pooling Strategy for Acoustic Scene Classification

    Rong HUANG  Yue XIE  

     
    LETTER-Speech and Hearing

      Pubricized:
    2023/10/17
      Vol:
    E107-D No:1
      Page(s):
    153-156

    Acoustic scene classification (ASC) is a fundamental domain within the realm of artificial intelligence classification tasks. ASC-based tasks commonly employ models based on convolutional neural networks (CNNs) that utilize log-Mel spectrograms as input for gathering acoustic features. In this paper, we designed a CNN-based multi-scale pooling (MSP) strategy for ASC. The log-Mel spectrograms are utilized as the input to CNN, which is partitioned into four frequency axis segments. Furthermore, we devised four CNN channels to acquire inputs from distinct frequency ranges. The high-level features extracted from outputs in various frequency bands are integrated through frequency pyramid average pooling layers at multiple levels. Subsequently, a softmax classifier is employed to classify different scenes. Our study demonstrates that the implementation of our designed model leads to a significant enhancement in the model's performance, as evidenced by the testing of two acoustic datasets.

  • Improved Head and Data Augmentation to Reduce Artifacts at Grid Boundaries in Object Detection

    Shinji UCHINOURA  Takio KURITA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2023/10/23
      Vol:
    E107-D No:1
      Page(s):
    115-124

    We investigated the influence of horizontal shifts of the input images for one stage object detection method. We found that the object detector class scores drop when the target object center is at the grid boundary. Many approaches have focused on reducing the aliasing effect of down-sampling to achieve shift-invariance. However, down-sampling does not completely solve this problem at the grid boundary; it is necessary to suppress the dispersion of features in pixels close to the grid boundary into adjacent grid cells. Therefore, this paper proposes two approaches focused on the grid boundary to improve this weak point of current object detection methods. One is the Sub-Grid Feature Extraction Module, in which the sub-grid features are added to the input of the classification head. The other is Grid-Aware Data Augmentation, where augmented data are generated by the grid-level shifts and are used in training. The effectiveness of the proposed approaches is demonstrated using the COCO validation set after applying the proposed method to the FCOS architecture.

  • CQTXNet: A Modified Xception Network with Attention Modules for Cover Song Identification

    Jinsoo SEO  Junghyun KIM  Hyemi KIM  

     
    LETTER

      Pubricized:
    2023/10/02
      Vol:
    E107-D No:1
      Page(s):
    49-52

    Song-level feature summarization is fundamental for the browsing, retrieval, and indexing of digital music archives. This study proposes a deep neural network model, CQTXNet, for extracting song-level feature summary for cover song identification. CQTXNet incorporates depth-wise separable convolution, residual network connections, and attention models to extend previous approaches. An experimental evaluation of the proposed CQTXNet was performed on two publicly available cover song datasets by varying the number of network layers and the type of attention modules.

  • Frameworks for Privacy-Preserving Federated Learning

    Le Trieu PHONG  Tran Thi PHUONG  Lihua WANG  Seiichi OZAWA  

     
    INVITED PAPER

      Pubricized:
    2023/09/25
      Vol:
    E107-D No:1
      Page(s):
    2-12

    In this paper, we explore privacy-preserving techniques in federated learning, including those can be used with both neural networks and decision trees. We begin by identifying how information can be leaked in federated learning, after which we present methods to address this issue by introducing two privacy-preserving frameworks that encompass many existing privacy-preserving federated learning (PPFL) systems. Through experiments with publicly available financial, medical, and Internet of Things datasets, we demonstrate the effectiveness of privacy-preserving federated learning and its potential to develop highly accurate, secure, and privacy-preserving machine learning systems in real-world scenarios. The findings highlight the importance of considering privacy in the design and implementation of federated learning systems and suggest that privacy-preserving techniques are essential in enabling the development of effective and practical machine learning systems.

  • CCTSS: The Combination of CNN and Transformer with Shared Sublayer for Detection and Classification

    Aorui GOU  Jingjing LIU  Xiaoxiang CHEN  Xiaoyang ZENG  Yibo FAN  

     
    PAPER-Image

      Pubricized:
    2023/07/06
      Vol:
    E107-A No:1
      Page(s):
    141-156

    Convolutional Neural Networks (CNNs) and Transformers have achieved remarkable performance in detection and classification tasks. Nevertheless, their feature extraction cannot consider both local and global information, so the detection and classification performance can be further improved. In addition, more and more deep learning networks are designed as more and more complex, and the amount of computation and storage space required is also significantly increased. This paper proposes a combination of CNN and transformer, and designs a local feature enhancement module and global context modeling module to enhance the cascade network. While the local feature enhancement module increases the range of feature extraction, the global context modeling is used to capture the feature maps' global information. To decrease the model complexity, a shared sublayer is designed to realize the sharing of weight parameters between the adjacent convolutional layers or cross convolutional layers, thereby reducing the number of convolutional weight parameters. Moreover, to effectively improve the detection performance of neural networks without increasing network parameters, the optimal transport assignment approach is proposed to resolve the problem of label assignment. The classification loss and regression loss are the summations of the cost between the demander and supplier. The experiment results demonstrate that the proposed Combination of CNN and Transformer with Shared Sublayer (CCTSS) performs better than the state-of-the-art methods in various datasets and applications.

1-20hit(855hit)