The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] oxygen(16hit)

1-16hit
  • Comprehensive Analysis of Read Fluctuations in ReRAM CiM by Using Fluctuation Pattern Classifier Open Access

    Ayumu YAMADA  Zhiyuan HUANG  Naoko MISAWA  Chihiro MATSUI  Ken TAKEUCHI  

     
    PAPER

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:10
      Page(s):
    416-425

    In this work, fluctuation patterns of ReRAM current are classified automatically by proposed fluctuation pattern classifier (FPC). FPC is trained with artificially created dataset to overcome the difficulties of measured current signals, including the annotation cost and imbalanced data amount. Using FPC, fluctuation occurrence under different write conditions is analyzed for both HRS and LRS current. Based on the measurement and classification results, physical models of fluctuations are established.

  • Stack-Type Enzyme Biofuel Cell Using a Cellulose Nanofiber Sheet to Absorb Lactic Acid from Human Sweat as Fuel

    Satomitsu IMAI  Atsuya YAMAKAWA  

     
    BRIEF PAPER

      Pubricized:
    2022/11/28
      Vol:
    E106-C No:6
      Page(s):
    258-261

    An enzymatic biofuel cell (BFC) that uses lactic acid in human sweat as fuel to generate electricity is an attractive power source for wearable devices. A BFC capable of generating electricity with human sweat has been developed. It comprised a flexible tattoo seal type battery with silver oxide vapor deposited on a flexible material and conductive carbon nanotubes printed on it. The anode and cathode in this battery were arranged in a plane (planar type). This work proposes a thin laminated enzymatic BFC by inserting a cellulose nanofiber (CNF) sheet between two electrodes to absorb human sweat (stack-type). Optimization of the anode and changing the arrangement of electrodes from planar to stack type improved the output and battery life. The stack type is 43.20μW / cm2 at 180mV, which is 1.25 times the maximum power density of the planar type.

  • Development and Evaluation of Fructose Biofuel Cell Using Gel Fuel and Liquid Fuel as Hybrid Structure

    Atsuya YAMAKAWA  Keisuke TODAKA  Satomitsu IMAI  

     
    BRIEF PAPER

      Pubricized:
    2020/12/01
      Vol:
    E104-C No:6
      Page(s):
    198-201

    Improvement of output and lifetime is a problem for biofuel cells. A structure was adopted in which gelation mixed with agarose and fuel (fructose) was sandwiched by electrodes made of graphene-coated carbon fiber. The cathode surface not contacting the gel was exposed to air. In addition, the anode surface not contacting the gel was in contact with fuel liquid to prevent the gel from being dry. The power density of the fuel cell was improved by increasing oxygen supply from air and the lifetime was improved by maintaining wet gel, that is, the proposed structure was a hybrid type having advantages of both fuel gel and fuel liquid. The output increased almost up to that of just using fuel gel and did not decrease significantly over time. The maximum power density in the proposed system was approximately 74.0 µW/cm2, an enhancement of approximately 1.5 times that in the case of using liquid fuel. The power density after 24 h was approximately 46.1 µW/cm2, which was 62% of the initial value.

  • Enzymatic Biofuel Cell Using Grooved Gel of Fructose between Graphene-Coated Carbon Fiber Cloth Electrodes

    Kenta KUROISHI  Toshinari DOI  Yusuke YONAHA  Iku KUSAJIMA  Yasushiro NISHIOKA  Satomitsu IMAI  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    151-154

    Improvement of output and lifetime is a problem for biofuel cells. A structure was adopted in which gelation mixed with agarose and fuel (fructose) was sandwiched by electrodes made of graphene-coated carbon fiber. The electrode surface not contacting the gel was exposed to air. In addition, grooves were added to the gel surface to further increase the oxygen supply. The power density of the fuel cell was examined in terms of the electrode area exposed to air. The output increased almost in proportion to the area of the electrode exposed to air. Optimization of the concentration of fuel, gel, and the amount of enzyme at the cathode were also examined. The maximum power density in the proposed system was approximately 121μW/cm2, an enhancement of approximately 2.5 times that in the case of using liquid fuel. For the power density after 24h, the fuel gel was superior to the fuel liquid.

  • Polymer Surface Modification Due to Active Oxygen Species and Ultraviolet Light Exposures

    Kazuki HOSOYA  Ryo WAKAYAMA  Kei OYA  Satoru IWAMORI  

     
    BRIEF PAPER

      Vol:
    E100-C No:2
      Page(s):
    137-140

    Active oxygen species (AOS), e.g., excited singlet oxygen atom [O(1D)], excited singlet oxygen molecules (1O2), ground-state oxygen atom [O(3P)] and hydroxyl radical (OH), generated under two wavelengths (185 and 254 nm) of ultraviolet (UV) light were exposed to polyethylene (PE), polypropylene (PP) and polystyrene (PS) sheets. We investigated effects of the AOS exposure on the surface modification of these polymer sheets. Nonwoven sheet was used for the surface modification to eliminate an effect of the UV light irradiation. Although hydrophobicity of the PE and PP surfaces was maintained, the PS was changed into the hydrophilic surface.

  • Theoretical and Experimental Approaches to Select Resistive Switching Material

    Takeki NINOMIYA  Zhiqiang WEI  Shinichi YONEDA  Kenji SHIRAISHI  

     
    BRIEF PAPER-Electronic Materials

      Vol:
    E98-C No:1
      Page(s):
    62-64

    We considered the oxygen diffusivity around a conductive filament of resistive switching oxides, with the aim of designing material appropriate for highly reliable non-volatile memory. Both theoretical and experimental analyses were performed for this consideration. The theoretically obtained oxygen chemical potential difference, which works as a driving force for diffusion, significantly depends on a material. Then, we experimentally confirmed that the oxygen diffusion behaviors vary greatly depending on the chemical potential differences.

  • Study on Surface Characteristic of the Copper Nitride Films by Absorbed Oxygen Open Access

    Musun KWAK  Jongho JEON  Kyoungri KIM  Yoonseon YI  Sangjin AN  Donsik CHOI  Youngseok CHOI  Kyongdeuk JEONG  

     
    INVITED PAPER

      Vol:
    E95-C No:11
      Page(s):
    1744-1748

    The copper nitride surface characteristics according to atmospheric pressure plasma (APP) and excimer ultraviolet (EUV) treatment were compared using XPS and AFM. As the result of XPS analysis result, in C1s, the organic material removal effect was greater for EUV treatment than for APP, and the oxygen content was found to be low. In Cu (933 eV) area, the shoulder peak of Cu compound was detected, and the reduction was greater for EUV processing than for APP. In the AFM phase image which could be analyzed using the superficial viscoelasticity, the same trend was observed. On the copper nitride surface, the weak boundary O layer is formed according to the clean processing, and such phenomenon was interpreted as a factor for lowering the affinity with polymer.

  • A Study on Temporal Dark Image Sticking in AC-PDP Using Vacuum-Sealing Method

    Choon-Sang PARK  Heung-Sik TAE  

     
    PAPER-Electronic Displays

      Vol:
    E92-C No:1
      Page(s):
    161-165

    Minimizing the residual impurity gases is a key factor for reducing temporal dark image sticking. Therefore, this paper uses a vacuum-sealing method that minimizes the residual impurity gases by enhancing the base vacuum level, and the resultant change in temporal dark image sticking is then examined in comparison to that with the conventional sealing method using 42-in. ac-PDPs with a high Xe (11%) content. As a result of monitoring the difference in the display luminance, infrared emission, and perceived luminance between the cells with and without temporal dark image sticking, the vacuum-sealing method is demonstrated to reduce temporal dark image sticking by decreasing the residual impurity gases and increasing the oxygen vacancy in the MgO layer. Furthermore, the use of a modified driving waveform along with the vacuum-sealing method is even more effective in reducing temporal dark image sticking.

  • 763-nm Laser Light Source for Oxygen Monitoring Using Second Harmonic Generation in Direct-Bonded Quasi-Phase-Matched LiNbO3 Ridge Waveguide

    Osamu TADANAGA  Masaki ASOBE  Yoshiki NISHIDA  Hiroshi MIYAZAWA  Kaoru YOSHINO  Hiroyuki SUZUKI  

     
    LETTER-Lasers, Quantum Electronics

      Vol:
    E89-C No:7
      Page(s):
    1115-1117

    We fabricate a 763-nm laser module based on second-harmonic generation using a direct-bonded quasi-phase-matched LiNbO3 ridge waveguide. We obtained a 0.84-mW output of 763 nm light using a 1526-nm distributed-feedback laser diode. We also demonstrate O2 gas detection using the module output.

  • A 200-Channel Imaging System of Muscle Oxygenation Using CW Near-Infrared Spectroscopy

    Masatsugu NIWAYAMA  Katsuyuki YAMAMOTO  Daisuke KOHATA  Kosuke HIRAI  Nobuki KUDO  Takafumi HAMAOKA  Ryotaro KIME  Toshihito KATSUMURA  

     
    PAPER-Optical Imaging

      Vol:
    E85-D No:1
      Page(s):
    115-123

    We have developed a 200-channel imaging system that enables measurement of changes in oxygenation and blood volume and that covers a wider area (45 cm 15 cm) than that covered by conventional systems. This system consisted of 40 probes of five channels, a light-emitting diode (LED) driver, multiplexers and a personal computer. Each probe was cross-shaped and consisted of an LED, five photo diodes, and a current-to-voltage (I-V) converter. Lighting of the LEDs and acquisition of 200-channel data were time-multiplexed. The minimum data acquisition time for 200 channels, including the time required for calculation of oxygenation and monitoring of a few traces of oxygenation on a computer display, was about 0.2 s. We carried out exercise tests and measured the changes in oxy- and deoxy-hemoglobin concentrations in the thigh. Working muscles in exercises could be clearly imaged, and spatio-temporal changes in muscle oxygenation during exercise and recovery were also shown. These results demonstrated that the 200-channel imaging system enables observation of the distribution of muscle metabolism and localization of muscle function.

  • Fluorescence Image Analysis for Quantification of Reactive Oxygen Species Derived from Monocytes Activated by Photochemical Reaction

    Miho TAKAHASHI  Tomokazu NAGAO  Yoshiharu IMAZEKI  Kazuki MATSUZAKI  Haruyuki MINAMITANI  

     
    PAPER-Cellular Imaging

      Vol:
    E85-D No:1
      Page(s):
    160-166

    This study attempts to demonstrate that activated leukocytes are involved in vascular shut down effect (VSD) in photodynamic therapy (PDT). Hydrogen peroxide (H2O2), a reactive oxygen specie (ROS) that is found in monocytes, was visualized under a confocal laser scanning microscope, and ROS formation was quantified by fluorescence image analysis. The fluorescence intensity was expressed as a gray level graded from 0 to 255. Only the fluorescence derived from monocytes that had ZnCP-III incorporated and were irradiated with an HeNe laser caused increases in the fluorescence distribution over time, while no change of distribution was observed in three other conditions (only Zn CP-III added, only HeNe laser irradiation, or non-treated). The result indicates that the photochemical reaction induced by excitation of a photosensitizer, and ROS was derived from the reaction-stimulated monocytes. The activated monocytes generated ROS themselves and H2O2 was visualized by the DCFH fluorescence method. In conclusion, the result clearly shows that activated monocytes are involved in the VSD effect.

  • Fiber Optic Fluorosensor for Oxygen Measurement

    Eiji TOBA  Junji KAZAMA  Hidekazu TANAKA  Toyonori NISHIMATSU  Hiroaki AIZAWA  Hiroaki ISHIZAWA  

     
    PAPER-Chemical, Environmental, Biochemical and Medical Sensors

      Vol:
    E83-C No:3
      Page(s):
    366-370

    In this paper, we will report on a fiber optic oxygen sensor using fluorescence and its application to clinical examinations. It is based on fluorescence quenching. The quenching ratio of fluorescence is proportional to oxygen partial pressure by Stern-Volmer's formula in which oxygen concentration is estimated from measured emission intensity. We fabricated a microscopic luminous probe using a Solvent Green 5 doped plastic optical fiber coupler. The probes were demonstrated to have certain advantages for example they can be operated in both liquid and gas phases. And also, they are stable to pH and flow velocities. As a clinical application, the probe can reliably measure oxygen concentrations of whole blood in vivo. Moreover, we have clarified various characteristics of this probe.

  • The Influence of Oxygen Concentration on Contact Resistance Behaviours of Ag and Pd Materials in DC Breaking Arcs

    Zhuan-Ke CHEN  Keisuke ARAI  Koichiro SAWA  

     
    PAPER-Arcing Discharge and Contact Characteristics

      Vol:
    E77-C No:10
      Page(s):
    1647-1654

    The former experimental results have already shown that it is oxide films formed on contact surface causing the contact resistance to degrade in dc. breaking arcs for Ag and Pd materials. In order to understand the detailed information about it, the experiments are performed to break dc. inductive load at 20 V, 0.5 A and 1.0 A in nitrogen gas with different oxygen concentrations. The contact surface morphology and surface contamination are evaluated by SEM and AES, respectively. The tested results demonstrate that, for Ag contact, the severe oxidation occurs with increasing oxygen concentration, and the critical value of oxygen concentration is found to be about 10% and 5% in 0.5 A and 1.0 A, respectively, above those values the contact resistance degrades due to the oxide films formed on the contact surface, especially on the anode surface. While, for Pd contacts, a remarkable contact resistance degradation is not found even at 1.0 A in oxigen. Evidence shows that the arc duration, in particular the gaseous phase arc duration affects the anode oxidation, which in turn causes the significant fluctuation of contact resistance.

  • Fabrication of Small AlGaAs/GaAs HBT's for lntegrated Circuits Using New Bridged Base Electrode Technology

    Takumi NITTONO  Koichi NAGATA  Yoshiki YAMAUCHI  Takashi MAKIMURA  Hiroshi ITO  Osaake NAKAJIMA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E77-C No:9
      Page(s):
    1455-1463

    This paper describes small AlGaAs/GaAs HBT's for low-power and high-speed integrated circuits. The device fabrication is based on a new bridged base electrode technology that permits emitter width to be defined down to 1 µm. The new technology features oxygen-ion implantation for emitter-base junction isolation and zinc diffusion for extrinsic base formation. The oxygen-ion implanted emitter-base junction edge has been shown to provide a periphery recombination current much lower than that for the previous proton implanted edgs, the result being a much higher current gain particularly in small devices. The zinc diffusion offers high device yield and good uniformity in device characteristics even for a very thin (0.04 µm) base structure. An HBT with emitter dimensions of 12.4 µm2 yields an fT of 103 GHz and an fmax of 62 GHz, demonstrating that the new technology has a significant advantage in reducing the parasitic elements of small devices. Fabricated one-by-eight static frequency dividers and one-by-four/one-by-five two-modulus prescalers operate at frequencies over 10 GHz. The emitters of HBT's used in the divider are 12.4 µm2 in size, which is the smallest ever reported for AlGaAs/GaAs HBT IC's. These results indicate that the bridged base electrode technology is promising for developing a variety of high-speed HBT IC's.

  • High-Performance Small-Scale Collector-Up AlGaAs/GaAs HBT's with a Carbon-Doped Base Fabricated Using Oxygen-Ion Implantation

    Shoji YAMAHATA  Yutaka MATSUOKA  Tadao ISHIBASHI  

     
    PAPER

      Vol:
    E77-C No:9
      Page(s):
    1437-1443

    We report the development of high-performance small-scale AlGaAs/GaAs collector-up heterojunction bipolar transistors (C-up HBT) with a carbon (C)-doped base layer. Oxygen-ion (O+) implantation is used to define their intrinsic emitter/base junctions and zinc (Zn)-diffusion is used to lower the resistivity of their O+-implanted extrinsic base layers. The highly resistive O+-implanted AlGaAs layer in the extrinsic emitter region sufficiently suppresses electron injection even under high-forward-bias conditions, allowing high collector current densities. The use of a C-doped base is especially effective for small-scale C-up HBT's because it suppresses the undesirable turn-on voltage shift caused by base dopant diffusion in the intrinsic area around the collector-mesa perimeter that occurs during the high-temperature Zn-diffusion process after implantation. Even in a small-scale trasistor with a 2 µm2 µm collector, a current gain of 15 is obtained. A microwave transistor with a 2 µm10 µm collector has a cutoff frequency fT of 68 GHz and a maximum oscillation frequency fmax of 102 GHz. A small-scale C-up HBT with a 2 µm2 µm collector shows a higher fmax of 110 GHz due to reduced base/collector capacitance CBC and its fmax remains above 100 GHz, even at a low collector current of 1 mA. The CBC of this device is estimated to be as low as 2.2 fF. Current gain dependence on collector size is also investigated for C-up HBT's and it is found that the base recombination current around the collector-mesa perimeter reduces the current gain.

  • SIMOX Wafers Having Low Dislocation Density Formed with a Substoichiometric Dose of Oxygen

    Sadao NAKASHIMA  Katsutoshi IZUMI  

     
    PAPER-SOI Wafers

      Vol:
    E75-C No:12
      Page(s):
    1415-1420

    The threading dislocation density and the structure of SIMOX wafers formed under different implantation conditions have been invenstigated using Secco etching, cross-sectional transmission electron microscopy and Raman spectroscopy. The breakdown voltage of the buried oxide layer has also been studied. The dislocation density is greatly affected by the dose and the wafer temperature during implantation. The SIMOX wafer implanted at 180 keV with a substoichiometric dose of 0.4 1018 O+ cm-2 at 550 and subsequently annealed at 1350 has an extremely low dislocation density on the order of 102 cm-2. The effect of the wafer temperature on the reduction of the dislocation density is discussed.