The search functionality is under construction.

Keyword Search Result

[Keyword] physical layer security(31hit)

1-20hit(31hit)

  • Physical Layer Security Enhancement for mmWave System with Multiple RISs and Imperfect CSI Open Access

    Qingqing TU  Zheng DONG  Xianbing ZOU  Ning WEI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E107-B No:6
      Page(s):
    430-445

    Despite the appealing advantages of reconfigurable intelligent surfaces (RIS) aided mmWave communications, there remain practical issues that need to be addressed before the large-scale deployment of RISs in future wireless networks. In this study, we jointly consider the non-neglectable practical issues in a multi-RIS-aided mmWave system, which can significantly affect the secrecy performance, including the high computational complexity, imperfect channel state information (CSI), and finite resolution of phase shifters. To solve this non-convex challenging stochastic optimization problem, we propose a robust and low-complexity algorithm to maximize the achievable secrete rate. Specially, by combining the benefits of fractional programming and the stochastic successive convex approximation techniques, we transform the joint optimization problem into some convex ones and solve them sub-optimally. The theoretical analysis and simulation results demonstrate that the proposed algorithms could mitigate the joint negative effects of practical issues and yielded a tradeoff between secure performance and complexity/overhead outperforming non-robust benchmarks, which increases the robustness and flexibility of multiple RIS deployments in future wireless networks.

  • High-Quality and Low-Complexity Polar-Coded Radio-Wave Encrypted Modulation Utilizing Multipurpose Frozen Bits Open Access

    Keisuke ASANO  Takumi ABE  Kenta KATO  Eiji OKAMOTO  Tetsuya YAMAMOTO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/03/28
      Vol:
    E106-B No:10
      Page(s):
    987-996

    In recent years, physical layer security (PLS), which utilizes the inherent randomness of wireless signals to perform encryption at the physical layer, has attracted attention. We propose chaos modulation as a PLS technique. In addition, a method for encryption using a special encoder of polar codes has been proposed (PLS-polar), in which PLS can be easily achieved by encrypting the frozen bits of a polar code. Previously, we proposed a chaos-modulated polar code transmission method that can achieve high-quality and improved-security transmission using frozen bit encryption in polar codes. However, in principle, chaos modulation requires maximum likelihood sequence estimation (MLSE) for demodulation, and a large number of candidates for MLSE causes characteristic degradation in the low signal-to-noise ratio region in chaos polar transmission. To address this problem, in this study, we propose a versatile frozen bit method for polar codes, in which the frozen bits are also used to reduce the number of MLSE candidates for chaos demodulation. The numerical results show that the proposed method shows a performance improvement by 1.7dB at a block error rate of 10-3 with a code length of 512 and a code rate of 0.25 compared with that of conventional methods. We also show that the complexity of demodulation can be reduced to 1/16 of that of the conventional method without degrading computational security. Furthermore, we clarified the effective region of the proposed method when the code length and code rate were varied.

  • Demonstration of Chaos-Based Radio Encryption Modulation Scheme through Wired Transmission Experiments Open Access

    Kenya TOMITA  Mamoru OKUMURA  Eiji OKAMOTO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/01/25
      Vol:
    E106-B No:8
      Page(s):
    686-695

    With the recent commercialization of fifth-generation mobile communication systems (5G), wireless communications are being used in various fields. Accordingly, the number of situations in which sensitive information, such as personal data is handled in wireless communications is increasing, and so is the demand for confidentiality. To meet this demand, we proposed a chaos-based radio-encryption modulation that combines physical layer confidentiality and channel coding effects, and we have demonstrated its effectiveness through computer simulations. However, there are no demonstrations of performances using real signals. In this study, we constructed a transmission system using Universal Software Radio Peripheral, a type of software-defined radio, and its control software LabVIEW. We conducted wired transmission experiments for the practical use of radio-frequency encrypted modulation. The results showed that a gain of 0.45dB at a bit error rate of 10-3 was obtained for binary phase-shift keying, which has the same transmission efficiency as the proposed method under an additive white Gaussian noise channel. Similarly, a gain of 10dB was obtained under fading conditions. We also evaluated the security ability and demonstrated that chaos modulation has both information-theoretic security and computational security.

  • Space Division Multiplexing Using High-Luminance Cell-Size Reduction Arrangement for Low-Luminance Smartphone Screen to Camera Uplink Communication

    Alisa KAWADE  Wataru CHUJO  Kentaro KOBAYASHI  

     
    PAPER

      Pubricized:
    2022/11/01
      Vol:
    E106-A No:5
      Page(s):
    793-802

    To simultaneously enhance data rate and physical layer security (PLS) for low-luminance smartphone screen to camera uplink communication, space division multiplexing using high-luminance cell-size reduction arrangement is numerically analyzed and experimentally verified. The uplink consists of a low-luminance smartphone screen and an indoor telephoto camera at a long distance of 3.5 meters. The high-luminance cell-size reduction arrangement avoids the influence of spatial inter-symbol interference (ISI) and ambient light to obtain a stable low-luminance screen. To reduce the screen luminance without decreasing the screen pixel value, the arrangement reduces only the high-luminance cell area while keeping the cell spacing. In this study, two technical issues related to high-luminance cell-size reduction arrangement are solved. First, a numerical analysis and experimental results show that the high-luminance cell-size reduction arrangement is more effective in reducing the spatial ISI at low luminance than the conventional low-luminance cell arrangement. Second, in view point of PLS enhancement at wide angles, symbol error rate should be low in front of the screen and high at wide angles. A numerical analysis and experimental results show that the high-luminance cell-size reduction arrangement is more suitable for enhancing PLS at wide angles than the conventional low-luminance cell arrangement.

  • High-Quality Secure Wireless Transmission Scheme Using Polar Codes and Radio-Wave Encrypted Modulation Open Access

    Keisuke ASANO  Mamoru OKUMURA  Takumi ABE  Eiji OKAMOTO  Tetsuya YAMAMOTO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/10/03
      Vol:
    E106-B No:4
      Page(s):
    374-383

    In recent years, physical layer security (PLS), which is based on information theory and whose strength does not depend on the eavesdropper's computing capability, has attracted much attention. We have proposed a chaos modulation method as one PLS method that offers channel coding gain. One alternative is based on polar codes. They are robust error-correcting codes, have a nested structure in the encoder, and the application of this mechanism to PLS encryption (PLS-polar) has been actively studied. However, most conventional studies assume the application of conventional linear modulation such as BPSK, do not use encryption modulation, and the channel coding gain in the modulation is not achieved. In this paper, we propose a PLS-polar method that can realize high-quality transmission and encryption of a modulated signal by applying chaos modulation to a polar-coding system. Numerical results show that the proposed method improves the performance compared to the conventional PLS-polar method by 0.7dB at a block error rate of 10-5. In addition, we show that the proposed method is superior to conventional chaos modulation concatenated with low-density parity-check codes, indicating that the polar code is more suitable for chaos modulation. Finally, it is demonstrated that the proposed method is secure in terms of information theoretical and computational security.

  • Performance Improvement of Radio-Wave Encrypted MIMO Communications Using Average LLR Clipping Open Access

    Mamoru OKUMURA  Keisuke ASANO  Takumi ABE  Eiji OKAMOTO  Tetsuya YAMAMOTO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/02/15
      Vol:
    E105-B No:8
      Page(s):
    931-943

    In recent years, there has been significant interest in information-theoretic security techniques that encrypt physical layer signals. We have proposed chaos modulation, which has both physical layer security and channel coding gain, as one such technique. In the chaos modulation method, the channel coding gain can be increased using a turbo mechanism that exchanges the log-likelihood ratio (LLR) with an external concatenated code using the max-log approximation. However, chaos modulation, which is a type of Gaussian modulation, does not use fixed mapping, and the distance between signal points is not constant; therefore, the accuracy of the max-log approximated LLR degrades under poor channel conditions. As a result, conventional methods suffer from performance degradation owing to error propagation in turbo decoding. Therefore, in this paper, we propose a new LLR clipping method that can be optimally applied to chaos modulation by limiting the confidence level of LLR and suppressing error propagation. For effective clipping on chaos modulation that does not have fixed mappings, the average confidence value is obtained from the extrinsic LLR calculated from the demodulator and decoder, and clipping is performed based on this value, either in the demodulator or the decoder. Numerical results indicated that the proposed method achieves the same performance as the one using the exact LLR, which requires complicated calculations. Furthermore, the security feature of the proposed system is evaluated, and we observe that sufficient security is provided.

  • Multi-Level Encrypted Transmission Scheme Using Hybrid Chaos and Linear Modulation Open Access

    Tomoki KAGA  Mamoru OKUMURA  Eiji OKAMOTO  Tetsuya YAMAMOTO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/10/25
      Vol:
    E105-B No:5
      Page(s):
    638-647

    In the fifth-generation mobile communications system (5G), it is critical to ensure wireless security as well as large-capacity and high-speed communication. To achieve this, a chaos modulation method as an encrypted and channel-coded modulation method in the physical layer is proposed. However, in the conventional chaos modulation method, the decoding complexity increases exponentially with respect to the modulation order. To solve this problem, in this study, a hybrid modulation method that applies quadrature amplitude modulation (QAM) and chaos to reduce the amount of decoding complexity, in which some transmission bits are allocated to QAM while maintaining the encryption for all bits is proposed. In the proposed method, a low-complexity decoding method is constructed by ordering chaos and QAM symbols based on the theory of index modulation. Numerical results show that the proposed method maintains good error-rate performance with reduced decoding complexity and ensures wireless security.

  • Overloaded Wireless MIMO Switching for Information Exchanging through Untrusted Relay in Secure Wireless Communication

    Arata TAKAHASHI  Osamu TAKYU  Hiroshi FUJIWARA  Takeo FUJII  Tomoaki OHTSUKI  

     
    PAPER

      Pubricized:
    2021/03/30
      Vol:
    E104-B No:10
      Page(s):
    1249-1259

    Information exchange through a relay node is attracting attention for applying machine-to-machine communications. If the node demodulates the received signal in relay processing confidentially, the information leakage through the relay station is a problem. In wireless MIMO switching, the frequency spectrum usage efficiency can be improved owing to the completion of information exchange within a short time. This study proposes a novel wireless MIMO switching method for secure information exchange. An overloaded situation, in which the access nodes are one larger than the number of antennas in the relay node, makes the demodulation of the relay node difficult. The access schedule of nodes is required for maintaining the overload situation and the high information exchange efficiency. This study derives the equation model of the access schedule and constructs an access schedule with fewer time periods in the integer programming problem. From the computer simulation, we confirm that the secure capacity of the proposed MIMO switching is larger than that of the original one, and the constructed access schedule is as large as the ideal and minimum time period for information exchange completion.

  • Secret Key Generation Scheme Based on Deep Learning in FDD MIMO Systems

    Zheng WAN  Kaizhi HUANG  Lu CHEN  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/04/07
      Vol:
    E104-D No:7
      Page(s):
    1058-1062

    In this paper, a deep learning-based secret key generation scheme is proposed for FDD multiple-input and multiple-output (MIMO) systems. We built an encoder-decoder based convolutional neural network to characterize the wireless environment to learn the mapping relationship between the uplink and downlink channel. The designed neural network can accurately predict the downlink channel state information based on the estimated uplink channel state information without any information feedback. Random secret keys can be generated from downlink channel responses predicted by the neural network. Simulation results show that deep learning based SKG scheme can achieve significant performance improvement in terms of the key agreement ratio and achievable secret key rate.

  • Security-Reliability Tradeoff for Joint Relay-User Pair and Friendly Jammer Selection with Channel Estimation Error in Internet-of-Things

    Guangna ZHANG  Yuanyuan GAO  Huadong LUO  Xiaochen LIU  Nan SHA  Kui XU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/12/22
      Vol:
    E104-B No:6
      Page(s):
    686-695

    In this paper, we explore the physical layer security of an Internet of Things (IoT) network comprised of multiple relay-user pairs in the presence of multiple malicious eavesdroppers and channel estimation error (CEE). In order to guarantee secure transmission with channel estimation error, we propose a channel estimation error oriented joint relay-user pair and friendly jammer selection (CEE-JRUPaFJS) scheme to improve the physical layer security of IoT networks. For the purpose of comparison, the channel estimation error oriented traditional round-robin (CEE-TRR) scheme and the channel estimation error oriented traditional pure relay-user pair selection (CEE-TPRUPS) scheme are considered as benchmark schemes. The exact closed-form expressions of outage probability (OP) and intercept probability (IP) for the CEE-TRR and CEE-TPRUPS schemes as well as the CEE-JRUPaFJS scheme are derived over Rayleigh fading channels, which are employed to characterize network reliability and security, respectively. Moreover, the security-reliability tradeoff (SRT) is analyzed as a metric to evaluate the tradeoff performance of CEE-JRUPaFJS scheme. It is verified that the proposed CEE-JRUPaFJS scheme is superior to both the CEE-TRR and CEE-TPRUPS schemes in terms of SRT, which demonstrates our proposed CEE-JRUPaFJS scheme are capable of improving the security and reliability performance of IoT networks in the face of multiple eavesdroppers. Moreover, as the number of relay-user pairs increases, CEE-TPRUPS and CEE-JRUPaFJS schemes offer significant increases in SRT. Conversely, with an increasing number of eavesdroppers, the SRT of all these three schemes become worse.

  • Time Allocation in Ambient Backscatter Assisted RF-Powered Cognitive Radio Network with Friendly Jamming against Eavesdropping

    Ronghua LUO  Chen LIU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/03/03
      Vol:
    E103-B No:9
      Page(s):
    1011-1018

    In this paper, we study a radio frequency (RF)-powered backscatter assisted cognitive radio network (CRN), where an eavesdropper exists. This network includes a primary transmitter, a pair of secondary transmitter and receiver, a friendly jammer and an eavesdropper. We assume that the secondary transmitter works in ambient backscatter (AmBack) mode and the friendly jammer works in harvest-then-transmit (HTT) mode, where the primary transmitter serves as energy source. To enhance the physical layer security of the secondary user, the friendly jammer uses its harvested energy from the primary transmitter to transmit jamming noise to the eavesdropper. Furthermore, for maximizing the secrecy rate of secondary user, the optimal time allocation including the energy harvesting and jamming noise transmission phases is obtained. Simulation results verify the superiority of the proposed scheme.

  • Joint Trajectory and Power Design for Secure UAV-Enabled Multicasting

    Ke WANG  Wei HENG  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E103-A No:6
      Page(s):
    860-864

    This letter studies the physical layer security of an unmanned aerial vehicle (UAV)-enabled multicasting system, where a UAV serves as a mobile transmitter to send a common confidential message to a group of legitimate users under the existence of multiple eavesdroppers. The worst situation in which each eavesdropper can wiretap all legitimate users is considered. We seek to maximize the average secrecy rate by jointly optimizing the UAV's transmit power and trajectory over a given flight period. The resulting optimization problem is nonconvex and intractable to solve. To circumvent the nonconvexity, we propose an iterative algorithm to approximate the solution based on the alternating optimization and successive convex approximation methods. Simulation results validate the convergence and effectiveness of our proposed algorithm.

  • Energy Efficiency Optimization for Secure SWIPT System

    Chao MENG  Gang WANG  Bingjian YAN  Yongmei LI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/10/29
      Vol:
    E103-B No:5
      Page(s):
    582-590

    This paper investigates the secrecy energy efficiency maximization (SEEM) problem in a simultaneous wireless information and power transfer (SWIPT) system, wherein a legitimate user (LU) exploits the power splitting (PS) scheme for simultaneous information decoding (ID) and energy harvesting (EH). To prevent interference from eavesdroppers on the LU, artificial noise (AN) is incorporated into the confidential signal at the transmitter. We maximize the secrecy energy efficiency (SEE) by joining the power of the confidential signal, the AN power, and the PS ratio, while taking into account the minimum secrecy rate requirement of the LU, the required minimum harvested energy, the allowed maximum radio frequency transmission power, and the PS ratio. The formulated SEEM problem involves nonconvex fractional programming and is generally intractable. Our solution is Lagrangian relaxation method than can transform the original problem into a two-layer optimization problem. The outer layer problem is a single variable optimization problem with a Lagrange multiplier, which can be solved easily. Meanwhile, the inner layer one is fractional programming, which can be transformed into a subtractive form solved using the Dinkelbach method. A closed-form solution is derived for the power of the confidential signal. Simulation results verify the efficiency of the proposed SEEM algorithm and prove that AN-aided design is an effective method for improving system SEE.

  • Secrecy Rate Optimization for RF Powered Two-Hop Untrusted Relay Networks with Non-Linear EH Model Open Access

    Xiaochen LIU  Yuanyuan GAO  Nan SHA  Guozhen ZANG  Kui XU  

     
    LETTER

      Vol:
    E103-A No:1
      Page(s):
    215-220

    In this letter, we investigate the secure transmission in radio frequency (RF) powered two-hop untrusted relay networks, where the source node and untrusted relay are both wireless powered by an RF power supplier. Specifically, considering the non-linear energy-harvesting (EH) model, the two-process communication protocol is proposed. The secrecy rate is maximized by jointly designing the beamforming vector at source and beamforming matrix at relay, under the constraints of transmit power at RF power supplier and destination. The secrecy rate maximization (SRM) is non-convex, hence we propose an alternative optimization (AO) based iterative algorithm. Numerical results demonstrate that the proposed scheme can significantly increase the secrecy rate compared to the baseline schemes.

  • Low-Complexity Time-Invariant Angle-Range Dependent DM Based on Time-Modulated FDA Using Vector Synthesis Method

    Qian CHENG  Jiang ZHU  Tao XIE  Junshan LUO  Zuohong XU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/07/18
      Vol:
    E103-B No:1
      Page(s):
    79-90

    A low-complexity time-invariant angle-range dependent directional modulation (DM) based on time-modulated frequency diverse array (TM-FDA-DM) is proposed to achieve point-to-point physical layer security communications. The principle of TM-FDA is elaborated and the vector synthesis method is utilized to realize the proposal, TM-FDA-DM, where normalization and orthogonal matrices are designed to modulate the useful baseband symbols and inserted artificial noise, respectively. Since the two designed matrices are time-invariant fixed values, which avoid real-time calculation, the proposed TM-FDA-DM is much easier to implement than time-invariant DMs based on conventional linear FDA or logarithmical FDA, and it also outperforms the time-invariant angle-range dependent DM that utilizes genetic algorithm (GA) to optimize phase shifters on radio frequency (RF) frontend. Additionally, a robust synthesis method for TM-FDA-DM with imperfect angle and range estimations is proposed by optimizing normalization matrix. Simulations demonstrate that the proposed TM-FDA-DM exhibits time-invariant and angle-range dependent characteristics, and the proposed robust TM-FDA-DM can achieve better BER performance than the non-robust method when the maximum range error is larger than 7km and the maximum angle error is larger than 4°.

  • Security Performance Analysis of Joint Multi-Relay and Jammer Selection for Physical-Layer Security under Nakagami-m Fading Channel

    Guangna ZHANG  Yuanyuan GAO  Huadong LUO  Nan SHA  Mingxi GUO  Kui XU  

     
    LETTER-Cryptography and Information Security

      Vol:
    E102-A No:12
      Page(s):
    2015-2020

    In this paper, we investigate a novel joint multi-relay and jammer selection (JMRJS) scheme in order to improve the physical layer security of wireless networks. In the JMRJS scheme, all the relays succeeding in source decoding are selected to assist in the source signal transmission and meanwhile, all the remaining relay nodes are employed to act as friendly jammers to disturb the eavesdroppers by broadcasting artificial noise. Based on the more general Nakagami-m fading channel, we analyze the security performance of the JMRJS scheme for protecting the source signal against eavesdropping. The exact closed-form expressions of outage probability (OP) and intercept probability (IP) for the JMRJS scheme over Nakagami-m fading channel are derived. Moreover, we analyze the security-reliability tradeoff (SRT) of this scheme. Simulation results show that as the number of decode-and-forward (DF)relay nodes increases, the SRT of the JMRJS scheme improves notably. And when the transmit power is below a certain value, the SRT of the JMRJS scheme consistently outperforms the joint single-relay and jammer selection (JSRJS) scheme and joint equal-relay and jammer selection (JERJS) scheme respectively. In addition, the SRT of this scheme is always better than that of the multi-relay selection (MRS) scheme.

  • Secure Multiuser Communications with Multiple Untrusted Relays over Nakagami-m Fading Channels

    Dechuan CHEN  Yunpeng CHENG  Weiwei YANG  Jianwei HU  Yueming CAI  Junquan HU  Meng WANG  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E102-A No:8
      Page(s):
    978-981

    In this letter, we investigate the physical layer security in multi-user multi-relay networks, where each relay is not merely a traditional helper, but at the same time, can become a potential eavesdropper. We first propose an efficient low-complexity user and relay selection scheme to significantly reduce the amount of channel estimation as well as the amount of potential links for comparison. For the proposed scheme, we derive the closed-form expression for the lower bound of ergodic secrecy rate (ESR) to evaluate the system secrecy performance. Simulation results are provided to verify the validity of our expressions and demonstrate how the ESR scales with the number of users and relays.

  • AN-Aided Transmission Design for Secure MIMO Cognitive Radio Network with SWIPT

    Xinyu DA  Lei NI  Hehao NIU  Hang HU  Shaohua YUE  Miao ZHANG  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:8
      Page(s):
    946-952

    In this work, we investigate a joint transmit beamforming and artificial noise (AN) covariance matrix design in a multiple-input multiple-output (MIMO) cognitive radio (CR) downlink network with simultaneous wireless information and power transfer (SWIPT), where the malicious energy receivers (ERs) may decode the desired information and hence can be treated as potential eavesdroppers (Eves). In order to improve the secure performance of the transmission, AN is embedded to the information-bearing signal, which acts as interference to the Eves and provides energy to all receivers. Specifically, this joint design is studied under a practical non-linear energy harvesting (EH) model, our aim is to maximize the secrecy rate at the SR subject to the transmit power budget, EH constraints and quality of service (QoS) requirement. The original problem is not convex and challenging to be solved. To circumvent its intractability, an equivalent reformulation of this secrecy rate maximization (SRM) problem is introduced, wherein the resulting problem is primal decomposable and thus can be handled by alternately solving two convex subproblems. Finally, numerical results are presented to verify the effectiveness of our proposed scheme.

  • Robust Beamforming and Power Splitting for Secure CR Network with Practical Energy Harvesting

    Lei NI  Xinyu DA  Hang HU  Miao ZHANG  Hehao NIU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/01/25
      Vol:
    E102-B No:8
      Page(s):
    1547-1553

    This paper introduces an energy-efficient transmit design for multiple-input single-output (MISO) energy-harvesting cognitive radio (CR) networks in the presence of external eavesdroppers (Eves). Due to the inherent characteristics of CR network with simultaneous wireless information and power transfer (SWIPT), Eves may illegitimately access the primary user (PU) bands, and the confidential message is prone to be intercepted in wireless communications. Assuming the channel state information (CSI) of the Eves is not perfectly known at the transmitter, our approach to guaranteeing secrecy is to maximize the secrecy energy efficiency (SEE) by jointly designing the robust beamforming and the power splitting (PS) ratio, under the constraints of total transmit power, harvested energy at secondary receiver (SR) and quality of service (QoS) requirement. Specifically, a non-linear energy harvesting (EH) model is adopted for the SR, which can accurately characterize the property of practical RF-EH circuits. To solve the formulated non-convex problem, we first employ fractional programming theory and penalty function to recast it as an easy-to-handle parametric problem, and then deal with the non-convexity by applying S-Procedure and constrained concave convex procedure (CCCP), which enables us to exploit the difference of concave functions (DC) programming to seek the maximum worst-case SEE. Finally, numerical results are presented to verify the performance of the proposed scheme.

  • Secure Spatial Modulation Based on Dynamic Multi-Parameter WFRFT

    Qian CHENG  Jiang ZHU  Junshan LUO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/05/08
      Vol:
    E101-B No:11
      Page(s):
    2304-2312

    A novel secure spatial modulation (SM) scheme based on dynamic multi-parameter weighted-type fractional Fourier transform (WFRFT), abbreviated as SMW, is proposed. Each legitimate transmitter runs WFRFT on the spatially modulated super symbols before transmit antennas, the parameters of which are dynamically updated using the transmitting bits. Each legitimate receiver runs inverse WFRFT to demodulate the received signals, the parameters of which are also dynamically generated using the recovered bits with the same updating strategies as the transmitter. The dynamic update strategies of WFRFT parameters are designed. As a passive eavesdropper is ignorant of the initial WFRFT parameters and the dynamic update strategies, which are indicated by the transmitted bits, it cannot recover the original information, thereby guaranteeing the communication security between legitimate transmitter and receiver. Besides, we formulate the maximum likelihood (ML) detector and analyze the secrecy capacity and the upper bound of BER. Simulations demonstrate that the proposed SMW scheme can achieve a high level of secrecy capacity and maintain legitimate receiver's low BER performance while deteriorating the eavesdropper's BER.

1-20hit(31hit)