To reduce the common mode voltage (CMV), suppress the CMV spikes, and improve the steady-state performance, a simplified reactive torque model predictive control (RT-MPC) for induction motors (IMs) is proposed. The proposed prediction model can effectively reduce the complexity of the control algorithm with the direct torque control (DTC) based voltage vector (VV) preselection approach. In addition, the proposed CMV suppression strategy can restrict the CMV within ±Vdc/6, and does not require the exclusion of non-adjacent non-opposite VVs, thus resulting in the system showing good steady-state performance. The effectiveness of the proposed design has been tested and verified by the practical experiment. The proposed algorithm can reduce the execution time by an average of 26.33% compared to the major competitors.
Daichi WATARI Ittetsu TANIGUCHI Francky CATTHOOR Charalampos MARANTOS Kostas SIOZIOS Elham SHIRAZI Dimitrios SOUDRIS Takao ONOYE
Energy management in buildings is vital for reducing electricity costs and maximizing the comfort of occupants. Excess solar generation can be used by combining a battery storage system and a heating, ventilation, and air-conditioning (HVAC) system so that occupants feel comfortable. Despite several studies on the scheduling of appliances, batteries, and HVAC, comprehensive and time scalable approaches are required that integrate such predictive information as renewable generation and thermal comfort. In this paper, we propose an thermal-comfort aware online co-scheduling framework that incorporates optimal energy scheduling and a prediction model of PV generation and thermal comfort with the model predictive control (MPC) approach. We introduce a photovoltaic (PV) energy nowcasting and thermal-comfort-estimation model that provides useful information for optimization. The energy management problem is formulated as three coordinated optimization problems that cover fast and slow time-scales by considering predicted information. This approach reduces the time complexity without a significant negative impact on the result's global nature and its quality. Experimental results show that our proposed framework achieves optimal energy management that takes into account the trade-off between electricity expenses and thermal comfort. Our sensitivity analysis indicates that introducing a battery significantly improves the trade-off relationship.
Hailan ZHOU Longyun KANG Xinwei DUAN Ming ZHAO
In the conventional single-phase PWM rectifier, the sinusoidal fluctuating current and voltage on the grid side will generate power ripple with a doubled grid frequency which leads to a secondary ripple in the DC output voltage, and the switching frequency of the conventional model predictive control strategy is not fixed. In order to solve the above two problems, a control strategy for suppressing the secondary ripple based on the three-vector fixed-frequency model predictive current control is proposed. Taking the capacitive energy storage type single-phase PWM rectifier as the research object, the principle of its active filtering is analyzed and a model predictive control strategy is proposed. Simulation and experimental results show that the proposed strategy can significantly reduce the secondary ripple of the DC output voltage, reduce the harmonic content of the input current, and achieve a constant switching frequency.
Masaya KUMAZAKI Masaki OGURA Takuji TACHIBANA
For beyond 5G era, in network function virtualization (NFV) environments, service chaining can be utilized to provide the flexible network infrastructures needed to support the creation of various application services. In this paper, we propose a dynamic service chain construction based on model predictive control (MPC) to utilize network resources. In the proposed method, the number of data packets in the buffer at each node is modeled as a dynamical system for MPC. Then, we formulate an optimization problem with the predicted amount of traffic injecting into each service chain from users for the dynamical system. In the optimization problem, the transmission route of each service chain, the node where each VNF is placed, and the amount of resources for each VNF are determined simultaneously by using MPC so that the amount of resources allocated to VNFs and the number of VNF migrations are minimized. In addition, the performance of data transmission is also controlled by considering the maximum amount of data packets stored in buffers. The performance of the proposed method is evaluated by simulation, and the effectiveness of the proposed method with different parameter values is investigated.
This paper proposes a switched pinning control method with a multi-rating mechanism for vehicle platoons. The platoons are expressed as multi-agent systems consisting of mass-damper systems in which pinning agents receive target velocities from external devices (ex. intelligent traffic signals). We construct model predictive control (MPC) algorithm that switches pinning agents via mixed-integer quadratic programmings (MIQP) problems. The optimization rate is determined according to the convergence rate to the target velocities and the inter-vehicular distances. This multi-rating mechanism can reduce the computational load caused by iterative calculation. Numerical results demonstrate that our method has a reduction effect on the string instability by selecting the pinning agents to minimize errors of the inter-vehicular distances to the target distances.
Hiroyuki OKUDA Nobuto SUGIE Tatsuya SUZUKI Kentaro HARAGUCHI Zibo KANG
Path planning and motion control are fundamental components to realize safe and reliable autonomous driving. The discrimination of the role of these two components, however, is somewhat obscure because of strong mathematical interaction between these two components. This often results in a redundant computation in the implementation. One of attracting idea to overcome this redundancy is a simultaneous path planning and motion control (SPPMC) based on a model predictive control framework. SPPMC finds the optimal control input considering not only the vehicle dynamics but also the various constraints which reflect the physical limitations, safety constraints and so on to achieve the goal of a given behavior. In driving in the real traffic environment, decision making has also strong interaction with planning and control. This is much more emphasized in the case that several tasks are switched in some context to realize higher-level tasks. This paper presents a basic idea to integrate decision making, path planning and motion control which is able to be executed in realtime. In particular, lane-changing behavior together with the decision of its initiation is selected as the target task. The proposed idea is based on the nonlinear model predictive control and appropriate switching of the cost function and constraints in it. As the result, the decision of the initiation, planning, and control of the lane-changing behavior are achieved by solving a single optimization problem under several constraints such as safety. The validity of the proposed method is tested by using a vehicle simulator.
Keisuke NAKASHIMA Takahiro MATSUDA Masaaki NAGAHARA Tetsuya TAKINE
We study wireless networked control systems (WNCSs), where controllers (CLs), controlled objects (COs), and other devices are connected through wireless networks. In WNCSs, COs can become unstable due to bursty packet losses and random delays on wireless networks. To reduce these network-induced effects, we utilize the packetized predictive control (PPC) method, where future control vectors to compensate bursty packet losses are generated in the receiving horizon manner, and they are packed into packets and transferred to a CO unit. In this paper, we extend the PPC method so as to compensate random delays as well as bursty packet losses. In the extended PPC method, generating many control vectors improves the robustness against both problems while it increases traffic on wireless networks. Therefore, we consider control vector selection to improve the robustness effectively under the constraint of single packet transmission. We first reconsider the input strategy of control vectors received by COs and propose a control vector selection scheme suitable for the strategy. In our selection scheme, control vectors are selected based on the estimated average and variance of round-trip delays. Moreover, we solve the problem that the CL may misconceive the CO's state due to insufficient information for state estimation. Simulation results show that our selection scheme achieves the higher robustness against both bursty packet losses and delays in terms of the 2-norm of the CO's state.
Takuma WAKASA Yoshiki NAGATANI Kenji SAWADA Seiichi SHIN
This paper considers a velocity control problem for merging and splitting maneuvers of vehicle platoons. In this paper, an external device sends velocity commands to some vehicles in the platoon, and the others adjust their velocities autonomously. The former is pinning control, and the latter is consensus control in multi-agent control. We propose a switched pinning control algorithm. Our algorithm consists of three sub-methods. The first is an optimal switching method of pinning agents based on an MLD (Mixed Logical Dynamical) system model and MPC (Model Predictive Control). The second is a representation method for dynamical platoon formation with merging and splitting maneuver. The platoon formation follows the positional relation between vehicles or the formation demand from the external device. The third is a switching reduction method by setting a cost function that penalizes the switching of the pinning agents in the steady-state. Our proposed algorithm enables us to improve the consensus speed. Moreover, our algorithm can regroup the platoons to the arbitrary platoons and control the velocities of the multiple vehicle platoons to each target value.
Ryo MASUDA Koichi KOBAYASHI Yuh YAMASHITA
The surveillance problem is to find optimal trajectories of agents that patrol a given area as evenly as possible. In this paper, we consider multiple agents with fuel constraints. The surveillance area is given by a weighted directed graph, where the weight assigned to each arc corresponds to the fuel consumption/supply. For each node, the penalty to evaluate the unattended time is introduced. Penalties, agents, and fuels are modeled by a mixed logical dynamical system model. Then, the surveillance problem is reduced to a mixed integer linear programming (MILP) problem. Based on the policy of model predictive control, the MILP problem is solved at each discrete time. In this paper, the feasibility condition for the MILP problem is derived. Finally, the proposed method is demonstrated by a numerical example.
In this paper, based on the policy of model predictive control, a new method of predictive pinning control is proposed for the consensus problem of multi-agent systems. Pinning control is a method that the external control input is added to some agents (pinning nodes), e.g., leaders. By the external control input, consensus to a certain target value (not the average of the initial states) and faster consensus are achieved. In the proposed method, the external control input is calculated by the controller node connected to only pinning nodes. Since the states of all agents are required in calculation of the external control input, communication delays must be considered. The proposed algorithm includes not only calculation of the external control input but also delay compensation. The effectiveness of the proposed method is presented by a numerical example.
Koichi KOBAYASHI Mifuyu KIDO Yuh YAMASHITA
In this paper, a surveillance system by multiple agents, which is called a multi-agent surveillance system, is studied. A surveillance area is given by an undirected connected graph. Then, the optimal control problem for multi-agent surveillance systems (the optimal surveillance problem) is to find trajectories of multiple agents that travel each node as evenly as possible. In our previous work, this problem is reduced to a mixed integer linear programming problem. However, the computation time for solving it exponentially grows with the number of agents. To overcome this technical issue, a new model predictive control method for multi-agent surveillance systems is proposed. First, a procedure of individual optimization, which is a kind of approximate solution methods, is proposed. Next, a method to improve the control performance is proposed. In addition, an event-triggering condition is also proposed. The effectiveness of the proposed method is presented by a numerical example.
Yuma ABE Hiroyuki TSUJI Amane MIURA Shuichi ADACHI
We propose an approach to allocate bandwidth for a satellite communications (SATCOM) system that includes the recent high-throughput satellite (HTS) with frequency flexibility. To efficiently operate the system, we manage the limited bandwidth resources available for SATCOM by employing a control method that allows the allocated bandwidths to exceed the communication demand of user terminals per HTS beam. To this end, we consider bandwidth allocation for SATCOM as an optimal control problem. Then, assuming that the model of communication requests is available, we propose an optimal control method by combining model predictive control and sparse optimization. The resulting control method enables the efficient use of the limited bandwidth and reduces the bandwidth loss and number of control actions for the HTS compared to a setup with conventional frequency allocation and no frequency flexibility. Furthermore, the proposed method allows to allocate bandwidth depending on various control objectives and beam priorities by tuning the corresponding weighting matrices. These findings were verified through numerical simulations by using a simple time variation model of the communication requests and predicted aircraft communication demand obtained from the analysis of actual flight tracking data.
Satoshi KAWAKAMI Takatsugu ONO Toshiyuki OHTSUKA Koji INOUE
We propose a parallel precomputation method for real-time model predictive control. The key idea is to use predicted input values produced by model predictive control to solve an optimal control problem in advance. It is well known that control systems are not suitable for multi- or many-core processors because feedback-loop control systems are inherently based on sequential operations. However, since the proposed method does not rely on conventional thread-/data-level parallelism, it can be easily applied to such control systems without changing the algorithm in applications. A practical evaluation using three real-world model predictive control system simulation programs demonstrates drastic performance improvement without degrading control quality offered by the proposed method.
Dai SATOH Koichi KOBAYASHI Yuh YAMASHITA
In this paper, a new method of model predictive control (MPC) for a multi-hop control network (MHCN) is proposed. An MHCN is a control system in which plants and controllers are connected through a multi-hop wireless network. In the proposed method, (i) control inputs and (ii) paths used in transmission of control inputs are computed with constant period by solving the finite-time optimal control problem. First, a mathematical model for expressing an MHCN is proposed. This model is given by a switched linear system, and is compatible with MPC. Next, the finite-time optimal control problem using this model is formulated, and is reduced to a mixed integer quadratic programming problem. Finally, a numerical example is presented to show the effectiveness of the proposed method.
In this paper, the integration of dynamic plant-wide optimization and distributed generalized predictive control (DGPC) is presented for serially connected processes. On the top layer, chance-constrained programming (CCP) is employed in the plant-wide optimization with economic and model uncertainties, in which the constraints containing stochastic parameters are guaranteed to be satisfied at a high level of probability. The deterministic equivalents are derived for linear and nonlinear individual chance constraints, and an algorithm is developed to search for the solution to the joint probability constrained problem. On the lower layer, the distributed GPC method based on neighborhood optimization with one-step delay communication is developed for on-line control of the whole system. Simulation studies for furnace temperature set-points optimization problem of the walking-beam-type reheating furnace are illustrated to verify the effectiveness and practicality of the proposed scheme.
Koichi KOBAYASHI Kunihiko HIRAISHI
Event-triggered and self-triggered control methods are an important control strategy in networked control systems. Event-triggered control is a method that the measured signal is sent to the controller (i.e., the control input is recomputed) only when a certain condition is satisfied. Self-triggered control is a method that the control input and the (non-uniform) sampling interval are computed simultaneously. In this paper, we propose new methods of event-triggered control and self-triggered control from the viewpoint of online optimization (i.e., model predictive control). In self-triggered control, the control input and the sampling interval are obtained by solving a pair of a quadratic programming (QP) problem and a mixed integer linear programming (MILP) problem. In event-triggered control, whether the control input is updated or not is determined by solving two QP problems. The effectiveness of the proposed methods is presented by numerical examples.
Tatsuya OTOSHI Yuichi OHSITA Masayuki MURATA Yousuke TAKAHASHI Noriaki KAMIYAMA Keisuke ISHIBASHI Kohei SHIOMOTO Tomoaki HASHIMOTO
In recent years, the time variation of Internet traffic has increased due to the growth of streaming and cloud services. Backbone networks must accommodate such traffic without congestion. Traffic engineering with traffic prediction is one approach to stably accommodating time-varying traffic. In this approach, routes are calculated from predicted traffic to avoid congestion, but predictions may include errors that cause congestion. We propose prediction-based traffic engineering that is robust against prediction errors. To achieve robust control, our method uses model predictive control, a process control method based on prediction of system dynamics. Routes are calculated so that future congestion is avoided without sudden route changes. We apply calculated routes for the next time slot, and observe traffic. Using the newly observed traffic, we again predict traffic and re-calculate the routes. Repeating these steps mitigates the impact of prediction errors, because traffic predictions are corrected in each time slot. Through simulations using backbone network traffic traces, we demonstrate that our method can avoid the congestion that the other methods cannot.
Cesar CARRIZO Kentaro KOBAYASHI Hiraku OKADA Masaaki KATAYAMA
This manuscript presents a simple scheme to improve the performance of a feedback control system that uses power line channels for its feedback loop. The noise and attenuation of power lines, and thus the signal to noise ratio, are known to be cyclostationary. Such cyclic features in the channel allow us to predict virtually error free transmission instants as well as instants of high probability of errors. This paper introduces and evaluates the effectiveness of a packet transmission scheduling that collaborates with a predictive control scheme adapted to this cyclostationary environment. In other words, we explore the cooperation between the physical and application layers of the system in order to achieve an overall optimization. To rate the control quality of the system we evaluate its stability as well as its ability to follow control commands accurately. We compare a scheme of increased packet rate against our proposed scheme which emulates a high packet rate with the use of predictive control. Through this comparison, we verify the effectiveness of the proposed scheme to improve the control quality of the system, even under low signal to noise ratio conditions in the cyclostationary channel.
Chuang WANG Zunchao LI Cheng LUO Lijuan ZHAO Yefei ZHANG Feng LIANG
A novel auto-tuning digital DC--DC converter is presented. In order to reduce the recovery time and undershoot, the auto-tuning control combines LnL, conventional PID and a predictive PID with a configurable predictive coefficient. A switch module is used to select an algorithm from the three control algorithms, according to the difference between the error signal and the two initially predefined thresholds. The detection and control logic is designed for both window delay line ADC and $Sigma Delta$ DPWM to correct the delay deviation. When the output of the converter exceeds the quantization range, the digital output of ADC is set at 0 or 1, and the delay line stops working to reduce power consumption. Theoretical analysis and simulations in the CSMC CMOS 0.5,$mu$m process are carried out to verify the proposed DC--DC converter. It is found that the converter achieves a power efficiency of more than 90% at heavy load, and reduces the recovery time and undershoot.
Many controllers are implemented on digital platforms as periodic control tasks. But, in embedded systems, an amount of resources are limited and the reduction of resource utilization of the control task is an important issue. Recently, much attention has been paid to a self-triggered controller, which updates control inputs aperiodically. A control task by which the self-triggered controller is implemented skips the release of jobs if the degradation of control performances by the skipping can be allowed. Each job computes not only the updated control inputs but also the next update instant and the control task is in the sleep state until the instant. Thus the resource utilization is reduced. In this paper, we consider self-triggered predictive control (stPC) of mixed logical dynamical (MLD) systems. We introduce a binary variable which determines whether the control inputs are updated or not. Then, we formulate an stPC problem of mixed logical dynamical systems, where activation costs are time-dependent to represent the preference of activations of the control task. Both the control inputs and the next update instant are computed by solving a mixed integer programming problem. The proposed stPC can reduce the number of updates with guaranteeing stability of the controlled system.