The search functionality is under construction.

Keyword Search Result

[Keyword] pulse compression(16hit)

1-16hit
  • Design and Analysis of Multiple False Targets against Pulse Compression Radar Based on OS-CFAR

    Xiang LIU  Dongsheng LI  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E102-C No:6
      Page(s):
    495-498

    A multi-carrier and blind shift-frequency jamming(MCBSFJ) against the pulsed compression radar with order-statistic (OS) constant false alarm rate (CFAR) detector is proposed. Firstly, according to the detection principle of the OS-CFAR detector, the design requirements for jamming signals are proposed. Then, some key parameters of the jamming are derived based on the characteristics of the OS-CFAR detector. As a result, multiple false targets around the real target with the quantity, amplitude and space distribution which can be controlled are produced. The simulation results show that the jamming method can reduce the detection probability of the target effectively.

  • Performance of an Inline RZ-DPSK Pulse Compression Using Raman Amplifier and Its Application in OTDM Tributary

    Quynh NGUYEN QUANG NHU  Hung NGUYEN TAN  Quang NGUYEN-THE  Motoharu MATSUURA  Naoto KISHI  

     
    PAPER

      Vol:
    E99-C No:2
      Page(s):
    227-234

    We experimentally investigate the performance of a distributed Raman amplifier (DRA)-based pulse compressor for a phase modulated signal. A 10 Gb/s return-to-zero (RZ)-differential phase shift keying (DPSK) signal is compressed to picosecond range after transmission. Pulsewidth is continuously compressed in a wide range from 20 to 3.2 ps by changing the pump power of the DRA while the compressed waveforms are well-matched with sech2 function. Error-free operations at bit-error-rate (BER) of 10-9 are achieved for the compressed signals of various pulsewidths with low power penalties within 2.3 dB compared to the back-to-back. After the compression, the 10 Gb/s signal is used to generate a 40 Gb/s RZ-DPSK optical time division multiplexing (OTDM) signal. This 40 Gb/s OTDM signal is then successfully demultiplexed to 10 Gb/s DPSK signal by using an optical gate based on four-wave mixing (FWM) in a highly nonlinear fiber (HNLF).

  • One to Six Wavelength Multicasting of RZ-OOK Based on Picosecond-Width-Tunable Pulse Source with Distributed Raman Amplification

    Irneza ISMAIL  Quang NGUYEN-THE  Motoharu MATSUURA  Naoto KISHI  

     
    PAPER-Advanced Photonics

      Vol:
    E98-C No:8
      Page(s):
    816-823

    All-optical 1-to-6 wavelength multicasting of a 10-Gb/s picosecond-tunable-width converted return-to-zero (RZ)-on-off-keying (OOK) data signal using a wideband-parametric pulse source from a distributed Raman amplifier (DRA) is experimentally demonstrated. Width-tunable wavelength multicasting within the C-band with approximately 40.6-nm of separation with various compressed RZ data signal inputs have been proposed and demonstrated. The converted multicast pulse widths can be flexibly controlled down to 2.67 ps by tuning the Raman pump powers of the DRA. Nearly equal pulse widths at all multicast wavelengths are obtained. Furthermore, wide open eye patterns and penalties less than 1.2 dB at the 10-9 bit-error-rate (BER) level are found.

  • Waveform Conversion and Wavelength Multicasting with Pulsewidth Tunability Using Raman Amplification Multiwavelength Pulse Compressor

    Quynh NGUYEN QUANG NHU  Quang NGUYEN-THE  Hung NGUYEN TAN  Motoharu MATSUURA  Naoto KISHI  

     
    PAPER-Advanced Photonics

      Vol:
    E98-C No:8
      Page(s):
    824-831

    A combination of nonreturn-to-zero (NRZ)-to-return-to-zero (RZ) waveform conversion and wavelength multicasting with pulsewidth tunability is experimentally demonstrated. A NRZ data signal is injected into a highly nonlinear fiber (HNLF)-based four-wave mixing (FWM) switch with four RZ clocks compressed by a Raman amplification-based multiwavelength pulse compressor (RA-MPC). The NRZ signal is multicast and converted to RZ signals in a continuously wide pulsewidth tuning range between around 12.17 and 4.68 ps by changing the Raman pump power of the RA-MPC. Error-free operations of the converted RZ signals with different pulsewidths are achieved with negative power penalties compared with the back-to-back NRZ signal and the small variation among received powers of RZ output channels at a bit-error-rate (BER) of 10-9. The NRZ-to-RZ waveform conversion and wavelength multicasting without using the RA-MPC are also successfully implemented.

  • Advanced Millimeter-Wave Radar System to Detect Pedestrians and Vehicles by Using Coded Pulse Compression and Adaptive Array

    Takaaki KISHIGAMI  Tadashi MORITA  Hirohito MUKAI  Maiko OTANI  Yoichi NAKAGAWA  

     
    PAPER-Sensing

      Vol:
    E96-B No:9
      Page(s):
    2313-2322

    This paper reports an advanced millimeter-wave radar system to enable detection of vehicles and pedestrians in wide areas around the radar site such as an intersection. We focus on a pulse coding scheme using complementary codes to reduce range sidelobe for discriminating vehicles from pedestrians with high accuracy. In order to suppress sidelobe increase created by RF circuit imperfections, a π/2 shift pulse modulation method with a complementary code pair cycle is presented. Moreover, in order to improve the angular resolution, a high-resolution direction of arrival estimation involving Tx beam scanning is presented. Experiments on a prototype confirm its range sidelobe suppression exceeds 40dB and its angular resolution is 5° for two human's separation at the distance of about 10m in an anechoic chamber. In a trial intersection experiment, a pedestrian detection rate of 95% was achieved at the false alarm rate of 10% in the range from 5m to 40m. The results prove the system's feasibility for future automotive safety application.

  • Recent Studies on InGaAsP and TiO2/Si Planar Asymmetric Coupled Waveguides as Dispersion Compensators

    Yong LEE  

     
    PAPER

      Vol:
    E85-C No:1
      Page(s):
    190-194

    Two planar asymmetric coupled waveguides were fabricated by using different materials (InGaAsP and TiO2/Si) and tested as dispersion compensators (or pulse compressors). Compression of a more-than-10-ps chirped pulse is experimentally demonstrated by using an InGaAsP planar asymmetric coupled waveguide whose group velocity dispersion (GVD) is enhanced by structural optimization and is spectrally tuned to an input pulse as precisely as possible. A large polarization dependence of the pulse compression was also observed and indicates that the observed pulse compression results from dispersion compensation due to the GVD associated with supermodes. A new planar, asymmetric coupled waveguide with a large difference in refractive indices of the two waveguides was fabricated by using a combination of dielectric (TiO2) and semiconductor (Si) materials in order to obtain better GVD characteristics than semiconductor (for example, InGaAsP) asymmetric coupled waveguides. A preliminary experiment on pulse compression using the TiO2/Si planar asymmetric coupled waveguide was conducted. A 2.8-ps blue chirped pulse was compressed down to about 1 ps by a 1-mm-long waveguide (compression ratio: 0.375, which is better than those of the previous InGaAsP planar asymmetric coupled waveguides). This compression ratio agrees well with a theoretical result obtained by a numerical model based on a supermode's GVD.

  • Sub-100 fs Higher Order Soliton Compression in Dispersion-Flattened Fibers

    Masahiro TSUCHIYA  Koji IGARASHI  Satoshi SAITO  Masato KISHI  

     
    INVITED PAPER-Optical Pulse Compression, Control and Monitoring

      Vol:
    E85-C No:1
      Page(s):
    141-149

    We review recent progresses in our studies on the fiber-optic soliton compression and related subjects with special emphasis on dispersion-flattened fibers (DFFs). As for the ultimately short pulse generation, it has been demonstrated to compress 5 ps laser diode pulses down to 20 fs with a 15.1 m-long single-stage step-like dispersion profiled fiber employed. The compression was brought about through a series of the higher order soliton processes in conjunction with a single and ordinary erbium-doped fiber preamplifier, and DFFs contained at its end played a major role. We have performed intensive investigations on the DFF compression mechanisms in the 100-20 fs range. A fairly reliable model was developed for the higher order soliton propagation along a DFF in the temporal range from 100 down to 30 fs by taking into consideration the higher order nonlinear and dispersion effects as well as incident pulse shape dependence. Through the simulation, parametric spectrum generation originating from the modulation instability gain was pointed out at frequencies apart from the pump wave frequency, which agrees with the experimental observation. Its possible application is also discussed.

  • Ultrahigh-Speed OTDM Transmission beyond 1 Tera Bit-Per-Second Using a Femtosecond Pulse Train

    Masataka NAKAZAWA  Takashi YAMAMOTO  Koichi Robert TAMURA  

     
    INVITED PAPER-OTDM Transmission System, Optical Regeneration and Coding

      Vol:
    E85-C No:1
      Page(s):
    117-125

    Progress on a single wavelength channel OTDM terabit/s transmission is described. In particular, we focus on 1.28 Tbit/s OTDM transmission over 70 km which we realized recently. A pre-chirping technique using a high speed phase modulator is emphasized to simultaneously compensate for third- and fourth-order dispersion. The input pulse width was 380 fs, and the pulse broadening after a 70 km transmission was as small as 20 fs. All 128 channels time-division-demultiplexed to 10 Gbit/s had a bit error rate of less than 110-9, in which we employed a lot of new technique for pulse generation, dispersion compensation and demultiplexing. These techniques help pave the path for OTDM technology of the 21 century.

  • A Novel Subsurface Radar Using a Short Chirp Signal to Expand the Detection Range

    Yoshiyuki TOMIZAWA  Masanobu HIROSE  Ikuo ARAI  Kazuo TANABE  

     
    PAPER-Sensing

      Vol:
    E83-B No:10
      Page(s):
    2427-2434

    The use of a chirp signal is one of the methods to expand the detection range in subsurface radar. However, the presence of time-sidelobes after a conventional pulse-compression makes the detection range degraded because weak signals from underground objects are covered with a large time-sidelobe due to a ground surface reflection. In this paper, we propose a new pulse compression subsurface radar using a short chirp signal in which the echoes from the ground surface and the object are not overlapped. We show that the short chirp signal can improve the detection ability compared with a conventional chirp signal and examine the influence that the decreases of the signal duration and the compression ratio exert on the detection range. By the new pulse compression subsurface radar, the steel pipes buried down to 5 m in depth can be detected.

  • Pulse Compression Subsurface Radar

    Ikuo ARAI  Yoshiyuki TOMIZAWA  Masanobu HIROSE  

     
    INVITED PAPER

      Vol:
    E83-B No:9
      Page(s):
    1930-1937

    The application of subsurface radar using electromagnetic waves in the VHF band is wide and includes surveying voids under the ground and archaeological prospecting. To achieve a wider application range, the survey depth must be deeper. In this paper, a method of pulse compression using a chirp signal as one of the methods to fulfill this requirement is described, and its advantages and problems are discussed. First, a delay correlation method is proposed as a processing method of pulse compression. It converts RF band chirp signal directly into a pulse. Moreover, the method improves the S/N ratio by over 40 dB compared with conventional pulse radar. Therefore, it has the same detection ability as conventional pulse radar even though it uses less transmitting power. Next, the influences of RF amplifier saturation and underground propagation characteristics on the chirp signal are discussed; both are shown to have little influence on the detection ability of the method.

  • Orbit Determination of Meteors Using the MU Radar

    Toru SATO  Takuji NAKAMURA  Koji NISHIMURA  

     
    PAPER

      Vol:
    E83-B No:9
      Page(s):
    1990-1995

    Meteor storms and showers are now considered as potential hazard in the space environment. Radar observations of meteors has an advantage of a much higher sensitivity over optical observations. The MU radar of Kyoto University, Japan has a unique capability of very fast beam steerability as well as a high sensitivity to the echoes from ionization around the meteors. We developed a special observation scheme which enables us to determine the orbit of individual meteors. The direction of the target is determined by comparing the echo intensity at three adjacent beams. The Doppler pulse compression technique is applied to improve the signal-to-noise ratio of the echoes from the very fast target, and also to determine the range accurately. The developed scheme was applied to the observation made during the Leonid meteor storm on November 18, 1998 (JST). Estimated orbital distribution seems to suggest that the very weak meteors detected by the MU radar are dominated by sporadic meteors rather than the stream meteors associated with the Leonids storm.

  • Coded Pulse Compression with Reduced Bandwidth

    Reiji SATO  Masanori SHINRIKI  Shinkichi NISHIMOTO  

     
    PAPER-Electronic and Radio Applications

      Vol:
    E82-B No:7
      Page(s):
    1055-1063

    This paper investigates a new class of pulse compression codes in which the phase rotates clockwise, and afterward, rotates anticlockwise (or rotates anticlockwise, and afterward, rotates clockwise). The spectrum energy then concentrates to the narrower band compared to the conventional code such as the Barker code and the pulse is compressed not to the width of a single subpulses, but to the width made by a collection of several subpulses. It is revealed that, using the new code, PSL (Peak Sidelobe Level) can be reduced to -25.6 dB (1/19) -25.1 dB (1/18), which is much smaller than using the Barker code and Frank code, when the compression ratio is about 10 or larger. Furthermore, the signal-to-noise ratio after compression, the appropriate IF bandwidth and Doppler tolerance for the new code are estimated by simulation.

  • Generation of Low Timing Jitter, Sub-Picosecond Optical Pulses Using a Gain-Switched DFB-LD with CW Light Injection and a Nonlinear Optical Loop Mirror

    Hiroshi OHTA  Seiji NOGIWA  Haruo CHIBA  

     
    LETTER

      Vol:
    E81-C No:2
      Page(s):
    166-168

    The timing jitter of the optical pulse from a gain-switched laser diode is reduced by CW light injection. The reduction ratio of the timing jitter is 5. 5. The pulse width was compressed by a nonlinear optical loop mirror to a pedestal-free optical pulse with a pulse width of 420 fs.

  • Electroabsorption Modulators for High Speed Ultrashort Pulse Generation and Processing

    Martin GUY  Stanislav CHERNIKOV  Roy TAYLOR  

     
    PAPER

      Vol:
    E81-C No:2
      Page(s):
    169-174

    Electroabsorption modulators are high speed devices that are rapidly being commercialised and finding applications in a number of areas, particularly in telecommunications. A CW laser diode modulated by an electroabsorption modulator constitutes an extremely stable, robust and simple source of high quality, high repetition rate ultrashort optical pulses. In this paper we describe the capabilities and limitations of such pulse sources, and present nonlinear pulse compression and manipulation techniques that allow one to overcome these limitations. We also present the design of a new class of comb-like dispersion-profiled fibre compressor. Such a compressor is easily fabricated from commercially available fibres and represents a simple yet powerful way of extending the range of pulse durations available. As the electroabsorption modulator is essentially a high speed switch it is also applicable to optical processing problems, and we report the application of such a device to demultiplexing.

  • High-Repetition Frequency Pulse Generation at over 40 GHz Using Mode-Locked Lasers Integrated with Electroabsorption Modulators

    Kenji SATO  Isamu KOTAKA  Yasuhiro KONDO  Mitsuo YAMAMOTO  

     
    PAPER

      Vol:
    E81-C No:2
      Page(s):
    146-150

    This paper describes short pulse generation at over 40 GHz using monolithic mode-locked lasers integrated with electroabsorption modulators. The electroabsorption modulator using strained-InGaAsP multiquantum wells provides a pulse shortening gate at a high-repetition frequency. Pulse generation around 4 ps has been realized at a repetition frequency of 43. 5 GHz. Pulse compression using a 1. 3 µm single mode fiber is performed and a 0. 87 ps pulse is obtained.

  • Automatic Data Processing Procedure for Ground Probing Radar

    Toru SATO  Kenya TAKADA  Toshio WAKAYAMA  Iwane KIMURA  Tomoyuki ABE  Tetsuya SHINBO  

     
    PAPER-Electronic and Radio Applications

      Vol:
    E77-B No:6
      Page(s):
    831-837

    We developed an automatic data processing algorithm for a ground-probing radar which is essential in analyzing a large amount of data by a non-expert. Its aim is to obtain an optimum result that the conventional technique can give, without the assistance of an experienced operator. The algorithm is general except that it postulates the existence of at least one isolated target in the radar image. The raw images of underground objects are compressed in the vertical and the horizontal directions by using a pulse-compression filter and the aperture synthesis technique, respectively. The test function needed to configure the compression filter is automatically selected from the given image. The sensitivity of the compression filter is adjusted to minimize the magnitude of spurious responses. The propagation velocity needed to perform the aperture synthesis is determined by fitting a hyperbola to the selected echo trace. We verified the algorithm by applying it to the data obtained at two test sites with different magnitude of clutter echoes.