The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] quadrature amplitude modulation(23hit)

1-20hit(23hit)

  • Detection Algorithms for FBMC/OQAM Spatial Multiplexing Systems

    Kuei-Chiang LAI  Chi-Jen CHEN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/03/22
      Vol:
    E104-B No:9
      Page(s):
    1172-1187

    In this paper, we address the problem of detector design in severely frequency-selective channels for spatial multiplexing systems that adopt filter bank multicarrier based on offset quadrature amplitude modulation (FBMC/OQAM) as the communication waveforms. We consider decision feedback equalizers (DFEs) that use multiple feedback filters to jointly cancel the post-cursor components of inter-symbol interference, inter-antenna interference, and, in some configuration, inter-subchannel interference. By exploiting the special structures of the correlation matrix and the staggered property of the FBMC/OQAM signals, we obtain an efficient method of computing the DFE coefficients that requires a smaller number of multiplications than the linear equalizer (LE) and conventional DFE do. The simulation results show that the proposed detectors considerably outperform the LE and conventional DFE at moderate-to-high signal-to-noise ratios.

  • Analysis of BER Degradation Owing to Multiple Crosstalk Channels in Optical QPSK/QAM Signals

    Kyo INOUE  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2020/09/28
      Vol:
    E104-B No:4
      Page(s):
    370-377

    Inter-channel crosstalk is one of the limiting factors in multichannel optical systems. This paper presents a theoretical analysis of the bit-error-rate (BER) performance of quadrature phase shift keying (QPSK) and quadrature amplitude modulation (QAM) signals influenced by multiple crosstalk channels. The field distribution of multiple crosstalk channels in the constellation map is calculated. The BER of the QPSK/QAM signal, onto which the crosstalk light is superimposed, is then evaluated for a varying number of crosstalk channels under the condition that the total crosstalk power is constant. The results quantitatively confirm that as the channel number increases, the BER degradation caused by crosstalk light approaches that caused by Gaussian noise light. It is also confirmed that the degradations caused by crosstalk light and Gaussian light are similar for QAM signals of high-level modulation.

  • Precoded Physical Layer Network Coding with Coded Modulation in MIMO-OFDM Bi-Directional Wireless Relay Systems Open Access

    Satoshi DENNO  Kazuma YAMAMOTO  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/07/14
      Vol:
    E104-B No:1
      Page(s):
    99-108

    This paper proposes coded modulation for physical layer network coding in multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) bi-directional wireless relay systems where precoding is applied. The proposed coded modulation enables the relays to decode the received signals, which improves the transmission performance. Soft input decoding for the proposed coded modulation is proposed. Furthermore, we propose two precoder weight optimization techniques, called “per subcarrier weight optimization” and “total weight optimization”. This paper shows a precoder configuration based on the optimization with the lattice reduction or the sorted QR-decomposition. The performance of the proposed network coding is evaluated by computer simulation in a MIMO-OFDM two-hop wireless relay system with the 16 quadrature amplitude modulation (QAM) or the 256QAM. The proposed coded modulation attains a coding gain of about 2dB at the BER of 10-4. The total weight optimization achieves about 1dB better BER performance than the other at the BER of 10-4.

  • Hybrid QAM-Based Labels Generated by Two Multi-Level PSK Codes

    Takahiro KODAMA  Gabriella CINCOTTI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2019/05/31
      Vol:
    E102-B No:12
      Page(s):
    2199-2204

    Hybrid 200Gchip/s QAM-based opto-electrical labels with high orthogonality are generated using the convolution of optical 16-level and electrical 4-level PSK codes. The combined simultaneous use of optical and electrical encoding increases system flexibility and code orthogonality, as well as code recognition performance. By performing 50 G-class low-speed LN-PM-based electrical processing on the 200 Gchip/s PSK-based optical code labels generated by a multiport optical encoder, the value of PCR indicating the code orthogonality is increased significantly, and the receiver sensitivity is improved by 0.5dB to achieve LER =10-9 in the next-generation optical packet switching networks.

  • Unconventional Jamming Scheme for Multiple Quadrature Amplitude Modulations Open Access

    Shaoshuai ZHUANSUN  Jun-an YANG  Cong TANG  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2019/04/05
      Vol:
    E102-B No:10
      Page(s):
    2036-2044

    It is generally believed that jamming signals similar to communication signals tend to demonstrate better jamming effects. We believe that the above conclusion only works in certain situations. To select the correct jamming scheme for a multi-level quadrature amplitude modulation (MQAM) signal in a complex environment, an optimal jamming method based on orthogonal decomposition (OD) is proposed. The method solves the jamming problem from the perspective of the in-phase dimension and quadrature dimension and exhibits a better jamming effect than normal methods. The method can construct various unconventional jamming schemes to cope with a complex environment and verify the existing jamming schemes. The Experimental results demonstrate that when the jammer ideally knows the received power at the receiver, the proposed method will always have the optimal jamming effects, and the constructed unconventional jamming scheme has an excellent jamming effect compared with normal schemes in the case of a constellation distortion.

  • 32-Gbit/s CMOS Receivers in 300-GHz Band Open Access

    Shinsuke HARA  Kosuke KATAYAMA  Kyoya TAKANO  Ruibing DONG  Issei WATANABE  Norihiko SEKINE  Akifumi KASAMATSU  Takeshi YOSHIDA  Shuhei AMAKAWA  Minoru FUJISHIMA  

     
    PAPER

      Vol:
    E101-C No:7
      Page(s):
    464-471

    This paper presents low-noise amplifier (LNA)-less 300-GHz CMOS receivers that operate above the NMOS unity-power-gain frequency, fmax. The receivers consist of a down-conversion mixer with a doubler- or tripler-last multiplier chain that upconverts an LO1/n signal into 300 GHz. The conversion gain of the receiver with the doubler-last multiplier is -19.5 dB and its noise figure, 3-dB bandwidth, and power consumption are 27 dB, 27 GHz, and 0.65 W, respectively. The conversion gain of the receiver with the tripler-last multiplier is -18 dB and its noise figure, 3-dB bandwidth, and power consumption are 25.5 dB, 33 GHz, and 0.41 W, respectively. The receivers achieve a wireless data rate of 32 Gb/s with 16QAM. This shows the potential of the moderate-fmax CMOS technology for ultrahigh-speed THz wireless communications.

  • Symbol Error Probability Performance of Rectangular QAM with MRC Reception over Generalized α-µ Fading Channels

    Furqan Haider QURESHI  Qasim Umar KHAN  Shahzad Amin SHEIKH  Muhammad ZEESHAN  

     
    PAPER-Communication Theory and Signals

      Vol:
    E101-A No:3
      Page(s):
    577-584

    In this paper, a new and an accurate symbol error probability's analytical model of Rectangular Quadrature Amplitude Modulation in α-µ fading channel is presented for single-user single-input multi-output environment, which can be easily extended to generalized fading channels. The maximal-ratio combining technique is utilized at the receiving end and unified moment generating functions are used to derivate the results. The fading mediums considered are independent and non-identical. The mathematical model presented is applicable for slow and frequency non-selective fading channels only. The final expression is presented in terms of Meijer G-function; it contains single integrals with finite limits to evaluate the mathematical expressions with numerical techniques. The beauty of the model will help evaluate symbol error probability of rectangular quadrature amplitude modulation with spatial diversity over various fading mediums not addressed in this article. To check for the validity of derived analytical expressions, comparison is made between theoretical and simulation results at the end.

  • Wide-Range and Fast-Tracking Non-Data-Aided Frequency Offset Estimator for QAM Optical Coherent Receivers

    Tadao NAKAGAWA  Takayuki KOBAYASHI  Koichi ISHIHARA  Yutaka MIYAMOTO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E99-B No:7
      Page(s):
    1416-1425

    This paper describes a blind frequency offset estimator (FOE) with wide frequency range for coherent quadrature amplitude modulation (QAM) receivers. The FOE combines a spectrum-based frequency offset estimation algorithm as a coarse estimator with a frequency offset estimation algorithm using the periodogram as a fine estimator. To establish our design methodology, each block of the FOE is rigorously analyzed by using formulas and the minimum fast Fourier transform (FFT) size that generates a frequency spectrum for both the coarse and fine estimators is determined. The coarse estimator's main feature is that all estimation processes are carried out in the frequency domain, which yields convergence more than five times faster than that of conventional estimators. The estimation frequency range of the entire FOE is more than 1.8 times wider than that of conventional FOEs. Experiments on coherent optical 64-ary QAM (64-QAM) reveal that frequency offset estimation can be achieved under a frequency offset value greater than the highest value of the conventional estimation range.

  • Channel Estimation Method Using Arbitrary Amplitude and Phase Modulation Schemes for MIMO Sensor

    Tsubasa TASHIRO  Kentaro NISHIMORI  Tsutomu MITSUI  Nobuyasu TAKEMURA  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2102-2109

    We have proposed an intruder detection method by using multiple-input multiple-output (MIMO) channels. Although the channel capacity for MIMO transmission is severely degraded in time-variant channels, we can take advantage of this feature in MIMO sensor applications. For MIMO sensors, the accurate estimation of channel state information (CSI) is essential. Moreover, the transceiver should be simplified from the viewpoint of saving power. Narrowband signals such as minimum shift keying (MSK) and offset quaternary phase shift keying signals are effective and are used in sensor network systems. However, because the timing and carrier offsets between the transmitter and receiver are relatively large compared to the symbol rate, accurate CSI estimation is impossible given the severe constraints imposed by the timing and carrier offsets. To solve this issue, a signal synchronization method for the CSI estimation using a narrowband MSK signal has been proposed. In this paper, we propose a new CSI estimation method for arbitrary amplitude and phase modulation schemes for the MIMO sensor. The key point of the proposed method is that control signals (unique words) are mapped so as not to pass through the origin of the complex I/Q plane. The estimation accuracy of the proposed method is evaluated via a computer simulation. Moreover, the basic performance by the proposed CSI estimation method is verified when considering intruder detection by MIMO sensor.

  • Irregular Triangular Quadrature Amplitude Modulations

    Sung-Joon PARK  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E97-B No:7
      Page(s):
    1358-1364

    The recently suggested regular-type triangular quadrature amplitude modulation (TQAM) provides considerable power gain over square quadrature amplitude modulation (SQAM) at the expense of a slight increase in detection complexity. However, the power gain of the TQAM is limited due to the constraint that signal points should be regularly located at the vertexes of contiguous equilateral triangles. In this paper, we investigate two irregular (optimum and suboptimum) TQAMs where signal points are irregularly distributed while preserving the equilateral triangular lattice, and calculate achievable power gains of the proposed constellations. We also address optimum and suboptimum bit stream mapping methods and suggest a simple and optimum detection method for the constellations to be meaningful in practical implementation, and present analytical and simulation results. The proposed constellations can provide the asymptotic power gains of 0.825dB and 0.245dB over SQAM and regular TQAM, respectively.

  • Synchronous Demodulation of Coherent 16-QAM with Feedforward Carrier Recovery Open Access

    Ali AL-BERMANI  Christian WORDEHOFF  Sebastian HOFFMANN  Timo PFAU  Ulrich RUCKERT  Reinhold NOE  

     
    INVITED PAPER

      Vol:
    E94-B No:7
      Page(s):
    1794-1800

    We present the recovery of 2.5 Gb/s synchronous 16-point quadrature amplitude modulation data in real-time for an linewidth-times-symbol-duration ratio of 0.00048 after transmission over 1.6 km standard single mode fiber.

  • Synthesis of 16 Quadrature Amplitude Modulation Using Polarization-Multiplexing QPSK Modulator

    Isao MOROHASHI  Takahide SAKAMOTO  Masaaki SUDO  Atsushi KANNO  Akito CHIBA  Junichiro ICHIKAWA  Tetsuya KAWANISHI  

     
    PAPER

      Vol:
    E94-B No:7
      Page(s):
    1809-1814

    We propose a polarization-multiplexing QPSK modulator for synthesis of a 16 QAM signal. The generation mechanism of 16 QAM is based on an electro-optic vector digital-to-analog converter, which can generate optical multilevel signals from binary electric data sequences. A quad-parallel Mach-Zehnder modulator (QPMZM) used in our previous research requires precise control of electric signals or fabrication of a variable optical attenuator, which significantly raises the degree of difficulty to control electric signals or device fabrication. To overcome this difficulty, we developed the polarization-multiplexing QPSK modulator, which improved the method of superposition of QPSK signals. In the polarization-multiplexing QPSK modulator, two QPSK signals are output with orthogonal polarization and superposed through a polarizer. The amplitude ratio between the two QPSK signals can be precisely controlled by rotating the polarizer to arrange the 16 symbols equally. Generation of 16 QAM with 40 Gb/s and a bit error rate of 5.6910-5 was successfully demonstrated using the polarization-multiplexing QPSK modulator. This modulator has simpler configuration than the previous one, utilized a dual-polarization MZM, alleviating complicated control of electric signals.

  • 256 QAM Digital Coherent Optical Transmission Using Raman Amplifiers Open Access

    Masato YOSHIDA  Seiji OKAMOTO  Tatsunori OMIYA  Keisuke KASAI  Masataka NAKAZAWA  

     
    PAPER

      Vol:
    E94-B No:2
      Page(s):
    417-424

    To meet the increasing demand to expand wavelength division multiplexing (WDM) transmission capacity, ultrahigh spectral density coherent optical transmission employing multi-level modulation formats has attracted a lot of attention. In particular, ultrahigh multi-level quadrature amplitude modulation (QAM) has an enormous advantage as regards expanding the spectral efficiency to 10 bit/s/Hz and even approaching the Shannon limit. We describe fundamental technologies for ultrahigh spectral density coherent QAM transmission and present experimental results on polarization-multiplexed 256 QAM coherent optical transmission using heterodyne and homodyne detection with a frequency-stabilized laser and an optical phase-locked loop technique. In this experiment, Raman amplifiers are newly adopted to decrease the signal power, which can reduce the fiber nonlinearity. As a result, the power penalty was reduced from 5.3 to 2.0 dB. A 64 Gbit/s data signal is successfully transmitted over 160 km with an optical bandwidth of 5.4 GHz.

  • Error Probability in Multichannel Reception with M-QAM, M-PAM and R-QAM Schemes under Generalized Fading

    Wamberto Jose Lira de QUEIROZ  Marcelo Sampaio de ALENCAR  Waslon Terllizzie Araujo LOPES  Francisco MADEIRO  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E93-B No:10
      Page(s):
    2677-2687

    This article presents a unified analytical framework to evaluate the bit error probability (BEP) of M-QAM, R-QAM and M-PAM modulation schemes for different types of fading channels, modeled with Hoyt, Rice, Rayleigh, Nakagami and Log-normal distributions. The mathematical development is obtained for maximal-ratio combining multichannel reception and assumes independent fading paths. The new BEP expressions are written in terms of the integral of the moment generating funcion of the instantaneos signal-to-noise ratio. The advantage of this approach is that it can be applied to any type of fading, and the integrals, even though they do not provide exact expressions, can be numerically evaluated.

  • Optimized 16-QAM Constellation for Binary Turbo Codes

    Keunhyung LEE  Donghoon KANG  Hyobae PARK  Wangrok OH  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E93-B No:2
      Page(s):
    381-384

    It is well known that the performance of turbo codes can be improved by optimizing the energy allocation on coded symbols. Based on this fact, we propose an optimized 16-quadrature amplitude modulation (QAM) constellation for binary turbo codes. In the proposed scheme, the energy allocated on turbo coded symbols is optimized by modifying the constellation of QAM. The proposed 16-QAM constellation combined with a binary turbo code offers better coding gain compared to the conventional combination of binary turbo code and QAM.

  • Integrated Lithium Niobate Mach-Zehnder Interferometers for Advanced Modulation Formats Open Access

    Tetsuya KAWANISHI  Takahide SAKAMOTO  Akito CHIBA  

     
    INVITED PAPER

      Vol:
    E92-C No:7
      Page(s):
    915-921

    We present recent progress of high-speed Mach-Zehnder modulator technologies for advanced modulation formats. Multi-level quadrature amplitude modulation signal can be synthesized by using parallel Mach-Zehnder modulators. We can generate complicated multi-level optical signals from binary data streams, where binary modulated signals are vectorially summed in optical circuits. Frequency response of each Mach-Zehnder interferometer is also very important to achieve high-speed signals. We can enhance the bandwidth of the response, with thin substrate. 87 Gbaud modulation was demonstrated with a dual-parallel Mach-Zehnder modulator.

  • A New Carrier Recovery Loop for High-Order Quadrature Amplitude Modulation

    Yuan OUYANG  Chin-Liang WANG  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E88-B No:11
      Page(s):
    4250-4258

    In this paper, we present a new all-digital carrier recovery loop for high-order quadrature amplitude modulation (QAM) signal constellations. The proposed approach is a blind phase-frequency detector structure that consists of a phase detector, a phase offset estimator, a frequency offset estimator, and a digital control oscillator. Compared to previous related approaches, the proposed algorithm provides a wider acquisition range and a more accurate estimation of frequency and phase offsets. These features are demonstrated by simulation results of the DOCSIS (Data-Over-Cable Service Interface Specifications) cable modem system.

  • Error Free Condition Attained by Down-Link Power Control for CDMA Fixed Wireless Access System: Measured ISI Level of Modem and Power Control Simulation

    Noboru IZUKA  Yoshimasa DAIDO  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:1
      Page(s):
    56-67

    This paper describes feasibility of a proposed fixed wireless access system with CDMA technology. The system adopts a primary modulation of 16 QAM and the same frequency allocation in all cells to improve spectral efficiency. The system capacity is 1 Gbps per cell within 120 MHz bandwidth. The number of available orthogonal codes corresponds to the orthogonal code length in the system. All subscribers can attain an error free condition with output power control in the presence of inter-cell interference. The following two items are considered to examine the proposed system feasibility. 1) A test modem is fabricated, and a back-to-back modem BER performance is measured. An inter-symbol interference (ISI) level of the modem is estimated with the measured performance. 2) A computer simulation of down-link power control is carried out considering inter-cell interference and impairment factors of the power control such as intra-sector interference caused by the ISI and limited ranges of total and relative output power controls. The simulation results show that the proposed system would be feasible because the obtained power penalties caused by the above impairment factors are negligible.

  • Symbol Error Probability of Orthogonal Space-Time Block Codes with QAM in Slow Rayleigh Fading Channel

    Sang-Hyo KIM  Ik-Seon KANG  Jong-Seon NO  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:1
      Page(s):
    97-103

    In this paper, using the exact expression for the pairwise error probability derived in terms of the message symbol distance between two message vectors rather than the codeword symbol distance between two transmitted codeword matrices, the exact closed form expressions for the symbol error probability of any linear orthogonal space-time block codes in slow Rayleigh fading channel are derived for QPSK, 16-QAM, 64-QAM, and 2 56-QAM.

  • Combining Recurrent Neural Networks with Self-Organizing Map for Channel Equalization

    Xiaoqiu WANG  Hua LIN  Jianming LU  Takashi YAHAGI  

     
    PAPER-Communication Devices/Circuits

      Vol:
    E85-B No:10
      Page(s):
    2227-2235

    Recently, neural networks (NNs) have been extensively applied to many signal processing problem due to their robust abilities to form complex decision regions. In particular, neural networks add flexibility to the design of equalizers for digital communication systems. Recurrent neural network (RNN) is a kind of neural network with one or more feedback loops, whereas self-organizing map (SOM) is characterized by the formation of a topographic map of the input patterns in which the spatial locations (i.e., coordinates) of the neurons in the lattice are indicative of intrinsic statistical features contained in the input patterns. In this paper, we propose a novel receiver structure by combining adaptive RNN equalizer with a SOM detector under serious ISI and nonlinear distortion in QAM system. According to the theoretical analysis and computer simulation results, the performance of the proposed scheme is shown to be quite effective in channel equalization under nonlinear distortion.

1-20hit(23hit)