The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] quadrature modulator(6hit)

1-6hit
  • A Multiband LTE SAW-Less CMOS Transmitter with Source-Follower-Driven Passive Mixers, Envelope-Tracked RF-PGAs, and Marchand Baluns

    Takao KIHARA  Tomohiro SANO  Masakazu MIZOKAMI  Yoshikazu FURUTA  Mitsuhiko HOKAZONO  Takaya MARUYAMA  Tetsuya HEIMA  Hisayasu SATO  

     
    PAPER

      Vol:
    E96-C No:6
      Page(s):
    774-782

    We present a multiband LTE SAW-less CMOS transmitter with source-follower-driven passive mixers, envelope-tracked RF-programmable gain amplifiers (RF-PGAs), and Marchand Baluns. A driver stage for passive mixers is realized by a source follower, which enables a quadrature modulator (QMOD) to achieve low noise performance at a 1.2 V supply and contributes to a small-area and low-power transmitter. An envelope-tracking technique is adopted to improve the linearity of RF-PGAs and obtain a better Evolved Universal Terrestrial Radio Access Adjacent Channel Leakage power Ratio (E-UTRA ACLR). The Marchand balun covers more frequency bands than a transformer and is more suitable for multiband operation. The proposed transmitter, which also includes digital-to-analog converters and a phase-locked loop, is implemented in a 65-nm CMOS process. The implemented transmitter achieves E-UTRA ACLR of less than -42 dBc and RX-band noise of less than -158 dBc/Hz in the frequency range of 700 MHz–2.6 GHz. These performances are good enough for multiband LTE and SAW-less operation.

  • Automatic IQ Imbalance Compensation Technique for Quadrature Modulator by Single-Tone Testing

    Minseok KIM  Yohei KONISHI  Jun-ichi TAKADA  Boxin GAO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:5
      Page(s):
    1864-1868

    This letter proposes an automatic IQ imbalance compensation technique for quadrature modulators by means of spectrum measurement of RF signal using a spectrum analyzer. The analyzer feeds back only magnitude information of the frequency spectrum of the signal. To realize IQ imbalance compensation, the conventional method of steepest descent is modified; the descent direction is empirically determined and a variable step-size is introduced for accelerating convergence. The experimental results for a four-channel transmitter operating at 11 GHz are presented for verification.

  • 3 to 5-GHz Si-Bipolar Quadrature Modulator and Demodulator Using a Wideband Frequency-Doubling Phase Shifter

    Tsuneo TSUKAHARA  Junzo YAMADA  

     
    PAPER

      Vol:
    E84-A No:2
      Page(s):
    506-512

    A 3 to 5-GHz Si-bipolar quadrature modulator and demodulator are described. Both feature a wideband frequency-doubling 90-degree phase shifter that has a mechanism for self-correction of phase errors caused by an original 90-degree phase-shift network at the half frequency of the carrier. Therefore, the phase shifter produces accurate quadrature carrier signals with doubled frequency. The quadrature modulator and demodulator in 30-GHz Si bipolar technology dissipate 80 mA at a 3-V supply. Image rejection of the modulator is more than 40 dB between 3.2 to 5.2 GHz. The phase and amplitude errors of the demodulator are less than 1.5 degrees and less than 0.15 dB, respectively, between 3.5 to 5.2 GHz. Therefore, both are suitable for either direct conversion or image-rejection transceivers for 5-GHz applications.

  • A 1.9-GHz Direct Conversion Transmitter IC with Low Power On-Chip Frequency Doubler

    Shoji OTAKA  Ryuichi FUJIMOTO  Hiroshi TANIMOTO  

     
    PAPER

      Vol:
    E82-A No:2
      Page(s):
    313-319

    A direct conversion transmitter IC including a proposed frequency doubler, a quadrature modulator, and a 3-bit variable attenuator was fabricated using BiCMOS technology with fT of 12 GHz. This architecture employing frequency doubler is intended for realizing wireless terminals that are low in cost and small in size. The architecture is effective for reducing serious interference between PA and VCO by making the VCO frequency different from that of PA. The proposed frequency doubler comprises a current-driven 90 phase-shifter and an ECL-EXOR circuit for both low power operation and wide input power range of local oscillator (LO). The proposed frequency doubler keeps high output power even when rectangular wave from LO is applied owing to use of the current-driven 90 phase-shifter instead of a voltage-driven 90 phase-shifter. An LO leakage of less than -25 dBc, an image rejection ratio in excess of 45 dBc, and a maximum attenuation of 21 dB were measured. The transmitter IC successfully operates at LO power above -15 dBm and consumes 68 mA from 2.7 V power supply voltage. An active die size is 1.5 mm3 mm.

  • A 2.7-V Quasi-Microwave Si-Bipolar Quadrature Modulator without Tuning

    Tsuneo TSUKAHARA  Tadao NAKAGAWA  Masahiro MURAGUCHI  

     
    LETTER

      Vol:
    E80-A No:2
      Page(s):
    349-352

    A 2.7-V Si-bipolar quadrature modulator with a 90 phase shifter consisting of a frequency doubler and a master-slave flip-flop is described. The modulator operates over a wide bandwidth (0.95 to 1.88 GHz) without any tuning or adjustments. It is implemented using 20-GHz Si-bipolar technology and dissipates 97 mW at 2.7 V. An image ratio of less than -40 dBc is obtained between 1.1 and 1.8 GHz. Moreover, third-order harmonic products are less than -40 dBc and carrier leakage is less than -30 dBc.

  • An Extremely Accurate Quadrature Modulator IC Using Phase Detection Method and Its Application to Multilevel QAM Systems

    Nobuaki IMAI  Hiroyuki KIKUCHI  

     
    PAPER

      Vol:
    E75-C No:6
      Page(s):
    674-682

    An extremely accurate and very wide-band quadrature modulator IC fabricated on a single chip using bipolar technology is presented. The characteristics of this quadrature modulator IC are much superior to conventional ones (modulation phase error and deviation from quadrature is about 1/10), and this IC is applicable to high modulation schemes such as 256 QAM. In this circuit, the phase difference between local signals input to each of two balanced modulators is detected by a phase detector, and a variable phase shifter in the local port is controlled automatically by the detected signals. This, along with the use of a wide-band variable phase shifter, enables the phase difference between the local signals input to the balanced modulators to be adaptively controlled to 90 degrees in wide frequency bands. In addition, a design method for the balanced modulators to obtain small modulation phase error is described. Based on this design method, a highly accurate quadrature modulator IC was fabricated, in which two balanced modulators, the phase detector, and the variable phase shifter were integrated on a single chip. Phase deviation from quadrature in the local signals was reduced to less than 0.3 degrees in the wide frequency bands of more tham 60 MHz. The modulation phase error of the balanced modulators wes less than 0.2 degrees at 140 MHz, and less than 2.5 degrees at up to 1.3 GHz.