The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] robust(252hit)

21-40hit(252hit)

  • Robust Adaptive Beamforming Based on the Effective Steering Vector Estimation and Covariance Matrix Reconstruction against Sensor Gain-Phase Errors

    Di YAO  Xin ZHANG  Bin HU  Xiaochuan WU  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2020/06/04
      Vol:
    E103-A No:12
      Page(s):
    1655-1658

    A robust adaptive beamforming algorithm is proposed based on the precise interference-plus-noise covariance matrix reconstruction and steering vector estimation of the desired signal, even existing large gain-phase errors. Firstly, the model of array mismatches is proposed with the first-order Taylor series expansion. Then, an iterative method is designed to jointly estimate calibration coefficients and steering vectors of the desired signal and interferences. Next, the powers of interferences and noise are estimated by solving a quadratic optimization question with the derived closed-form solution. At last, the actual interference-plus-noise covariance matrix can be reconstructed as a weighted sum of the steering vectors and the corresponding powers. Simulation results demonstrate the effectiveness and advancement of the proposed method.

  • Superpixel Based Hierarchical Segmentation for Color Image

    Chong WU  Le ZHANG  Houwang ZHANG  Hong YAN  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2020/07/03
      Vol:
    E103-D No:10
      Page(s):
    2246-2249

    In this letter, we propose a hierarchical segmentation (HS) method for color images, which can not only maintain the segmentation accuracy, but also ensure a good speed. In our method, HS adopts the fuzzy simple linear iterative clustering (Fuzzy SLIC) to obtain an over-segmentation result. Then, HS uses the fast fuzzy C-means clustering (FFCM) to produce the rough segmentation result based on superpixels. Finally, HS takes the non-iterative K-means clustering using priority queue (KPQ) to refine the segmentation result. In the validation experiments, we tested our method and compared it with state-of-the-art image segmentation methods on the Berkeley (BSD500) benchmark under different types of noise. The experiment results show that our method outperforms state-of-the-art techniques in terms of accuracy, speed and robustness.

  • Orthogonal Gradient Penalty for Fast Training of Wasserstein GAN Based Multi-Task Autoencoder toward Robust Speech Recognition

    Chao-Yuan KAO  Sangwook PARK  Alzahra BADI  David K. HAN  Hanseok KO  

     
    LETTER-Speech and Hearing

      Pubricized:
    2020/01/27
      Vol:
    E103-D No:5
      Page(s):
    1195-1198

    Performance in Automatic Speech Recognition (ASR) degrades dramatically in noisy environments. To alleviate this problem, a variety of deep networks based on convolutional neural networks and recurrent neural networks were proposed by applying L1 or L2 loss. In this Letter, we propose a new orthogonal gradient penalty (OGP) method for Wasserstein Generative Adversarial Networks (WGAN) applied to denoising and despeeching models. WGAN integrates a multi-task autoencoder which estimates not only speech features but also noise features from noisy speech. While achieving 14.1% improvement in Wasserstein distance convergence rate, the proposed OGP enhanced features are tested in ASR and achieve 9.7%, 8.6%, 6.2%, and 4.8% WER improvements over DDAE, MTAE, R-CED(CNN) and RNN models.

  • On the Complementary Role of DNN Multi-Level Enhancement for Noisy Robust Speaker Recognition in an I-Vector Framework

    Xingyu ZHANG  Xia ZOU  Meng SUN  Penglong WU  Yimin WANG  Jun HE  

     
    LETTER-Speech and Hearing

      Vol:
    E103-A No:1
      Page(s):
    356-360

    In order to improve the noise robustness of automatic speaker recognition, many techniques on speech/feature enhancement have been explored by using deep neural networks (DNN). In this work, a DNN multi-level enhancement (DNN-ME), which consists of the stages of signal enhancement, cepstrum enhancement and i-vector enhancement, is proposed for text-independent speaker recognition. Given the fact that these enhancement methods are applied in different stages of the speaker recognition pipeline, it is worth exploring the complementary role of these methods, which benefits the understanding of the pros and cons of the enhancements of different stages. In order to use the capabilities of DNN-ME as much as possible, two kinds of methods called Cascaded DNN-ME and joint input of DNNs are studied. Weighted Gaussian mixture models (WGMMs) proposed in our previous work is also applied to further improve the model's performance. Experiments conducted on the Speakers in the Wild (SITW) database have shown that DNN-ME demonstrated significant superiority over the systems with only a single enhancement for noise robust speaker recognition. Compared with the i-vector baseline, the equal error rate (EER) was reduced from 5.75 to 4.01.

  • Low-Complexity Time-Invariant Angle-Range Dependent DM Based on Time-Modulated FDA Using Vector Synthesis Method

    Qian CHENG  Jiang ZHU  Tao XIE  Junshan LUO  Zuohong XU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/07/18
      Vol:
    E103-B No:1
      Page(s):
    79-90

    A low-complexity time-invariant angle-range dependent directional modulation (DM) based on time-modulated frequency diverse array (TM-FDA-DM) is proposed to achieve point-to-point physical layer security communications. The principle of TM-FDA is elaborated and the vector synthesis method is utilized to realize the proposal, TM-FDA-DM, where normalization and orthogonal matrices are designed to modulate the useful baseband symbols and inserted artificial noise, respectively. Since the two designed matrices are time-invariant fixed values, which avoid real-time calculation, the proposed TM-FDA-DM is much easier to implement than time-invariant DMs based on conventional linear FDA or logarithmical FDA, and it also outperforms the time-invariant angle-range dependent DM that utilizes genetic algorithm (GA) to optimize phase shifters on radio frequency (RF) frontend. Additionally, a robust synthesis method for TM-FDA-DM with imperfect angle and range estimations is proposed by optimizing normalization matrix. Simulations demonstrate that the proposed TM-FDA-DM exhibits time-invariant and angle-range dependent characteristics, and the proposed robust TM-FDA-DM can achieve better BER performance than the non-robust method when the maximum range error is larger than 7km and the maximum angle error is larger than 4°.

  • Emergence of an Onion-Like Network in Surface Growth and Its Strong Robustness

    Yukio HAYASHI  Yuki TANAKA  

     
    LETTER-Graphs and Networks

      Vol:
    E102-A No:10
      Page(s):
    1393-1396

    We numerically investigate that optimal robust onion-like networks can emerge even with the constraint of surface growth in supposing a spatially embedded transportation or communication system. To be onion-like, moderately long links are necessary in the attachment through intermediations inspired from a social organization theory.

  • QoS-Constrained Robust Beamforming Design for MIMO Interference Channels with Bounded CSI Errors Open Access

    Conggai LI  Xuan GENG  Feng LIU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:10
      Page(s):
    1426-1430

    Constrained by quality-of-service (QoS), a robust transceiver design is proposed for multiple-input multiple-output (MIMO) interference channels with imperfect channel state information (CSI) under bounded error model. The QoS measurement is represented as the signal-to-interference-plus-noise ratio (SINR) for each user with single data stream. The problem is formulated as sum power minimization to reduce the total power consumption for energy efficiency. In a centralized manner, alternating optimization is performed at each node. For fixed transmitters, closed-form expression for the receive beamforming vectors is deduced. And for fixed receivers, the sum-power minimization problem is recast as a semi-definite program form with linear matrix inequalities constraints. Simulation results demonstrate the convergence and robustness of the proposed algorithm, which is important for practical applications in future wireless networks.

  • RLE-MRC: Robustness and Low-Energy Based Multiple Routing Configurations for Fast Failure Recovery

    Takayuki HATANAKA  Takuji TACHIBANA  

     
    PAPER-Network

      Pubricized:
    2019/04/12
      Vol:
    E102-B No:10
      Page(s):
    2045-2053

    Energy consumption is one of the important issues in communication networks, and it is expected that network devices such as network interface cards will be turned off to decrease the energy consumption. Moreover, fast failure recovery is an important issue in large-scale communication networks to minimize the impact of failure on data transmission. In order to realize both low energy consumption and fast failure recovery, a method called LE-MRC (Low-Energy based Multiple Routing Configurations) has been proposed. However, LE-MRC can degrade network robustness because some links ports are turned off for reducing the energy consumption. Nevertheless, network robustness is also important for maintaining the performance of data transmission and the network functionality. In this paper, for realizing both low energy consumption and fast failure recovery while maintaining network robustness, we propose Robustness and Low-Energy based Multiple Routing Configurations (RLE-MRC). In RLE-MRC, some links are categorized into unnecessary links, and those links are turned off to lower the energy consumption. In particular, the number of excluded links is determined based on the network robustness. As a result, the energy consumption can be reduced so as not to degrade the network robustness significantly. Simulations are conducted on some network topologies to evaluate the performance of RLE-MRC. We also use ns-3 to evaluate how the performance of data transmission and network robustness are changed by using RLE-MRC. Numerical examples show that the low energy consumption and the fast failure recovery can be achieved while maintaining network robustness by using RLE-MRC.

  • A Study of Impedance Switched Folded Monopole Antenna with Robustness to Metal for Installation on Metal Walls

    Yuta NAKAGAWA  Naobumi MICHISHITA  Hisashi MORISHITA  

     
    PAPER

      Vol:
    E102-C No:10
      Page(s):
    732-739

    In order to achieve an antenna with robustness to metal for closed space wireless communications, two types of the folded monopole antenna with different input impedance have been studied. In this study, we propose the folded monopole antenna, which can switch the input impedance by a simple method. Both simulated and measured results show that the proposed antenna can improve robustness to the proximity of the metal.

  • A Robust Algorithm for Deadline Constrained Scheduling in IaaS Cloud Environment

    Bilkisu Larai MUHAMMAD-BELLO  Masayoshi ARITSUGI  

     
    PAPER-Cloud Computing

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2942-2957

    The Infrastructure as a Service (IaaS) Clouds are emerging as a promising platform for the execution of resource demanding and computation intensive workflow applications. Scheduling the execution of scientific applications expressed as workflows on IaaS Clouds involves many uncertainties due to the variable and unpredictable performance of Cloud resources. These uncertainties are modeled by probability distribution functions in past researches or totally ignored in some cases. In this paper, we propose a novel robust deadline constrained workflow scheduling algorithm which handles the uncertainties in scheduling workflows in the IaaS Cloud environment. Our proposal is a static scheduling algorithm aimed at addressing the uncertainties related to: the estimation of task execution times; and, the delay in provisioning computational Cloud resources. The workflow scheduling problem was considered as a cost-optimized, deadline-constrained optimization problem. Our uncertainty handling strategy was based on the consideration of knowledge of the interval of uncertainty, which we used to modeling the execution times rather than using a known probability distribution function or precise estimations which are known to be very sensitive to variations. Experimental evaluations using CloudSim with synthetic workflows of various sizes show that our proposal is robust to fluctuations in estimates of task runtimes and is able to produce high quality schedules that have deadline guarantees with minimal penalty cost trade-off depending on the length of the interval of uncertainty. Scheduling solutions for varying degrees of uncertainty resisted against deadline violations at runtime as against the static IC-PCP algorithm which could not guarantee deadline constraints in the face of uncertainty.

  • Robust Index Code to Distribute Digital Images and Digital Contents Together

    Minsu KIM  Kunwoo LEE  Katsuhiko GONDOW  Jun-ichi IMURA  

     
    PAPER

      Pubricized:
    2018/06/20
      Vol:
    E101-D No:9
      Page(s):
    2179-2189

    The main purpose of Codemark is to distribute digital contents using offline media. Due to the main purpose of Codemark, Codemark cannot be used on digital images. It has high robustness on only printed images. This paper presents a new color code called Robust Index Code (RIC for short), which has high robustness on JPEG Compression and Resize targeting digital images. RIC embeds a remote database index to digital images so that users can reach to any digital contents. Experimental results, using our implemented RIC encoder and decoder, have shown high robustness on JPEG Comp. and Resize of the proposed codemark. The embedded database indexes can be extracted 100% on compressed images to 30%. In conclusion, it is able to store all the type of digital products by embedding indexes into digital images to access database, which means it makes a Superdistribution system with digital images realized. Therefore RIC has the potential for new Internet image services, since all the images encoded by RIC are possible to access original products anywhere.

  • Robust MIMO Radar Waveform Design to Improve the Worst-Case Detection Performance of STAP

    Hongyan WANG  Quan CHENG  Bingnan PEI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/11/20
      Vol:
    E101-B No:5
      Page(s):
    1175-1182

    The issue of robust multi-input multi-output (MIMO) radar waveform design is investigated in the presence of imperfect clutter prior knowledge to improve the worst-case detection performance of space-time adaptive processing (STAP). Robust design is needed because waveform design is often sensitive to uncertainties in the initial parameter estimates. Following the min-max approach, a robust waveform covariance matrix (WCM) design is formulated in this work with the criterion of maximization of the worst-case output signal-interference-noise-ratio (SINR) under the constraint of the initial parameter estimation errors to ease this sensitivity systematically and thus improve the robustness of the detection performance to the uncertainties in the initial parameter estimates. To tackle the resultant complicated and nonlinear robust waveform optimization issue, a new diagonal loading (DL) based iterative approach is developed, in which the inner and outer optimization problems can be relaxed to convex problems by using DL method, and hence both of them can be solved very effectively. As compared to the non-robust method and uncorrelated waveforms, numerical simulations show that the proposed method can improve the robustness of the detection performance of STAP.

  • Operator-Based Reset Control for Nonlinear System with Unknown Disturbance

    Mengyang LI  Mingcong DENG  

     
    PAPER-Systems and Control

      Vol:
    E101-A No:5
      Page(s):
    755-762

    In this paper, operator-based reset control for a class of nonlinear systems with unknown bounded disturbance is considered using right coprime factorization approach. In detail, firstly, for dealing with the unknown bounded disturbance of the nonlinear systems, operator-based reset control framework is proposed based on right coprime factorization. By the proposed framework, robust stability of the nonlinear systems with unknown bounded disturbance is guaranteed by using the proposed reset controller. Secondly, under the reset control framework, an optimal design scheme is discussed for minimizing the error norm based on the proposed operator-based reset controller. Finally, for conforming effectiveness of the proposed design scheme, a simulation example is given.

  • Robust Variable Step-Size Affine Projection SAF Algorithm against Impulsive Noises

    Jae-hyeon JEON  Sang Won NAM  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:5
      Page(s):
    844-847

    In this Letter, a robust variable step-size affine-projection subband adaptive filter algorithm (RVSS-APSAF) is proposed, whereby a band-dependent variable step-size is introduced to improve convergence and misalignment performances in impulsive noise environments. Specifically, the weight vector is adaptively updated to achieve robustness against impulsive noises. Finally, the proposed RVSS-APSAF algorithm is tested for system identification in an impulsive noise environment.

  • Network Congestion Minimization Models Based on Robust Optimization

    Bimal CHANDRA DAS  Satoshi TAKAHASHI  Eiji OKI  Masakazu MURAMATSU  

     
    PAPER-Network

      Pubricized:
    2017/09/14
      Vol:
    E101-B No:3
      Page(s):
    772-784

    This paper introduces robust optimization models for minimization of the network congestion ratio that can handle the fluctuation in traffic demands between nodes. The simplest and widely used model to minimize the congestion ratio, called the pipe model, is based on precisely specified traffic demands. However, in practice, network operators are often unable to estimate exact traffic demands as they can fluctuate due to unpredictable factors. To overcome this weakness, we apply robust optimization to the problem of minimizing the network congestion ratio. First, we review existing models as robust counterparts of certain uncertainty sets. Then we consider robust optimization assuming ellipsoidal uncertainty sets, and derive a tractable optimization problem in the form of second-order cone programming (SOCP). Furthermore, we take uncertainty sets to be the intersection of ellipsoid and polyhedral sets, and considering the mirror subproblems inherent in the models, obtain tractable optimization problems, again in SOCP form. Compared to the previous model that assumes an error interval on each coordinate, our models have the advantage of being able to cope with the total amount of errors by setting a parameter that determines the volume of the ellipsoid. We perform numerical experiments to compare our SOCP models with the existing models which are formulated as linear programming problems. The results demonstrate the relevance of our models in terms of congestion ratio and computation time.

  • Facial Expression Recognition via Regression-Based Robust Locality Preserving Projections

    Jingjie YAN  Bojie YAN  Ruiyu LIANG  Guanming LU  Haibo LI  Shipeng XIE  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2017/11/06
      Vol:
    E101-D No:2
      Page(s):
    564-567

    In this paper, we present a novel regression-based robust locality preserving projections (RRLPP) method to effectively deal with the issue of noise and occlusion in facial expression recognition. Similar to robust principal component analysis (RPCA) and robust regression (RR) approach, the basic idea of the presented RRLPP approach is also to lead in the low-rank term and the sparse term of facial expression image sample matrix to simultaneously overcome the shortcoming of the locality preserving projections (LPP) method and enhance the robustness of facial expression recognition. However, RRLPP is a nonlinear robust subspace method which can effectively describe the local structure of facial expression images. The test results on the Multi-PIE facial expression database indicate that the RRLPP method can effectively eliminate the noise and the occlusion problem of facial expression images, and it also can achieve better or comparative facial expression recognition rate compared to the non-robust and robust subspace methods meantime.

  • Optimal Spot-Checking Ratio for Probabilistic Attacks in Remote Data Checking

    Younsoo PARK  Jungwoo CHOI  Young-Bin KWON  Jaehwa PARK  Ho-Hyun PARK  

     
    LETTER-Information Network

      Pubricized:
    2017/04/26
      Vol:
    E100-D No:8
      Page(s):
    1911-1915

    Remote data checking (RDC) is a scheme that allows clients to efficiently check the integrity of data stored at an untrusted server using spot-checking. Efforts have been consistently devoted toward improving the efficiency of such RDC schemes because they involve some overhead. In this letter, it is assumed that a probabilistic attack model is adopted, in which an adversary corrupts exposed blocks in the network with a certain probability. An optimal spot-checking ratio that simultaneously guarantees the robustness of the scheme and minimizes the overhead is obtained.

  • Semi-Supervised Speech Enhancement Combining Nonnegative Matrix Factorization and Robust Principal Component Analysis

    Yonggang HU  Xiongwei ZHANG  Xia ZOU  Meng SUN  Yunfei ZHENG  Gang MIN  

     
    LETTER-Speech and Hearing

      Vol:
    E100-A No:8
      Page(s):
    1714-1719

    Nonnegative matrix factorization (NMF) is one of the most popular machine learning tools for speech enhancement. The supervised NMF-based speech enhancement is accomplished by updating iteratively with the prior knowledge of the clean speech and noise spectra bases. However, in many real-world scenarios, it is not always possible for conducting any prior training. The traditional semi-supervised NMF (SNMF) version overcomes this shortcoming while the performance degrades. In this letter, without any prior knowledge of the speech and noise, we present an improved semi-supervised NMF-based speech enhancement algorithm combining techniques of NMF and robust principal component analysis (RPCA). In this approach, fixed speech bases are obtained from the training samples chosen from public dateset offline. The noise samples used for noise bases training, instead of characterizing a priori as usual, can be obtained via RPCA algorithm on the fly. This letter also conducts a study on the assumption whether the time length of the estimated noise samples may have an effect on the performance of the algorithm. Three metrics, including PESQ, SDR and SNR are applied to evaluate the performance of the algorithms by making experiments on TIMIT with 20 noise types at various signal-to-noise ratio levels. Extensive experimental results demonstrate the superiority of the proposed algorithm over the competing speech enhancement algorithm.

  • Variable Tap-Length NLMS Algorithm with Adaptive Parameter

    Yufei HAN  Mingjiang WANG  Boya ZHAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:8
      Page(s):
    1720-1723

    Improved fractional variable tap-length adaptive algorithm that contains Sigmoid limited fluctuation function and adaptive variable step-size of tap-length based on fragment-full error is presented. The proposed algorithm can solve many deficiencies in previous algorithm, comprising small convergence rate and weak anti-interference ability. The parameters are able to modify reasonably on the basis of different situations. The Sigmoid constrained function can decrease the fluctuant amplitude of the instantaneous errors effectively and improves the ability of anti-noise interference. Simulations demonstrate that the proposed algorithm equips better performance.

  • Distributed Optimization with Incomplete Information for Heterogeneous Cellular Networks

    Haibo DAI  Chunguo LI  Luxi YANG  

     
    LETTER-Numerical Analysis and Optimization

      Vol:
    E100-A No:7
      Page(s):
    1578-1582

    In this letter, we propose two robust and distributed game-based algorithms, which are the modifications of two algorithms proposed in [1], to solve the joint base station selection and resource allocation problem with imperfect information in heterogeneous cellular networks (HCNs). In particular, we repeatedly sample the received payoffs in the exploitation stage of each algorithm to guarantee the convergence when the payoffs of some users (UEs) in [1] cannot accurately be acquired for some reasons. Then, we derive the rational sampling number and prove the convergence of the modified algorithms. Finally, simulation results demonstrate that two modified algorithms achieve good convergence performances and robustness in the incomplete information scheme.

21-40hit(252hit)