The search functionality is under construction.

Keyword Search Result

[Keyword] service(679hit)

1-20hit(679hit)

  • CMND: Consistent-Aware Multi-Server Network Design Model for Delay-Sensitive Applications

    Akio KAWABATA  Bijoy CHAND CHATTERJEE  Eiji OKI  

     
    PAPER-Network System

      Vol:
    E107-B No:3
      Page(s):
    321-329

    This paper proposes a network design model, considering data consistency for a delay-sensitive distributed processing system. The data consistency is determined by collating the own state and the states of slave servers. If the state is mismatched with other servers, the rollback process is initiated to modify the state to guarantee data consistency. In the proposed model, the selected servers and the master-slave server pairs are determined to minimize the end-to-end delay and the delay for data consistency. We formulate the proposed model as an integer linear programming problem. We evaluate the delay performance and computation time. We evaluate the proposed model in two network models with two, three, and four slave servers. The proposed model reduces the delay for data consistency by up to 31 percent compared to that of a typical model that collates the status of all servers at one master server. The computation time is a few seconds, which is an acceptable time for network design before service launch. These results indicate that the proposed model is effective for delay-sensitive applications.

  • Resource-Efficient and Availability-Aware Service Chaining and VNF Placement with VNF Diversity and Redundancy

    Takanori HARA  Masahiro SASABE  Kento SUGIHARA  Shoji KASAHARA  

     
    PAPER

      Pubricized:
    2023/10/10
      Vol:
    E107-B No:1
      Page(s):
    105-116

    To establish a network service in network functions virtualization (NFV) networks, the orchestrator addresses the challenge of service chaining and virtual network function placement (SC-VNFP) by mapping virtual network functions (VNFs) and virtual links onto physical nodes and links. Unlike traditional networks, network operators in NFV networks must contend with both hardware and software failures in order to ensure resilient network services, as NFV networks consist of physical nodes and software-based VNFs. To guarantee network service quality in NFV networks, the existing work has proposed an approach for the SC-VNFP problem that considers VNF diversity and redundancy. VNF diversity splits a single VNF into multiple lightweight replica instances that possess the same functionality as the original VNF, which are then executed in a distributed manner. VNF redundancy, on the other hand, deploys backup instances with standby mode on physical nodes to prepare for potential VNF failures. However, the existing approach does not adequately consider the tradeoff between resource efficiency and service availability in the context of VNF diversity and redundancy. In this paper, we formulate the SC-VNFP problem with VNF diversity and redundancy as a two-step integer linear program (ILP) that adjusts the balance between service availability and resource efficiency. Through numerical experiments, we demonstrate the fundamental characteristics of the proposed ILP, including the tradeoff between resource efficiency and service availability.

  • Heuristic-Based Service Chain Construction with Security-Level Management

    Daisuke AMAYA  Takuji TACHIBANA  

     
    PAPER

      Pubricized:
    2023/07/27
      Vol:
    E106-B No:12
      Page(s):
    1380-1391

    Network function virtualization (NFV) technology significantly changes the traditional communication network environments by providing network functions as virtual network functions (VNFs) on commercial off-the-shelf (COTS) servers. Moreover, for using VNFs in a pre-determined sequence to provide each network service, service chaining is essential. A VNF can provide multiple service chains with the corresponding network function, reducing the number of VNFs. However, VNFs might be the source or the target of a cyberattack. If the node where the VNF is installed is attacked, the VNF would also be easily attacked because of its security vulnerabilities. Contrarily, a malicious VNF may attack the node where it is installed, and other VNFs installed on the node may also be attacked. Few studies have been done on the security of VNFs and nodes for service chaining. This study proposes a service chain construction with security-level management. The security-level management concept is introduced to built many service chains. Moreover, the cost optimization problem for service chaining is formulated and the heuristic algorithm is proposed. We demonstrate the effectiveness of the proposed method under certain network topologies using numerical examples.

  • Power Allocation with QoS and Max-Min Fairness Constraints for Downlink MIMO-NOMA System Open Access

    Jia SHAO  Cong LI  Taotao YAN  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2023/09/06
      Vol:
    E106-B No:12
      Page(s):
    1411-1417

    Non-orthogonal multipe access based multiple-input multiple-output system (MIMO-NOMA) has been widely used in improving user's achievable rate of millimeter wave (mmWave) communication. To meet different requirements of each user in multi-user beams, this paper proposes a power allocation algorithm to satisfy the quality of service (QoS) of head user while maximizing the minimum rate of edge users from the perspective of max-min fairness. Suppose that the user who is closest to the base station (BS) is the head user and the other users are the edge users in each beam in this paper. Then, an optimization problem model of max-min fairness criterion is developed under the constraints of users' minimum rate requirements and the total transmitting power of the BS. The bisection method and Karush-Kuhn-Tucher (KKT) conditions are used to solve this complex non-convex problem, and simulation results show that both the minimum achievable rates of edge users and the average rate of all users are greatly improved significantly compared with the traditional MIMO-NOMA, which only consider max-min fairness of users.

  • MHND: Multi-Homing Network Design Model for Delay Sensitive Applications Open Access

    Akio KAWABATA  Bijoy CHAND CHATTERJEE  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:11
      Page(s):
    1143-1153

    When mission-critical applications are provided over a network, high availability is required in addition to a low delay. This paper proposes a multi-homing network design model, named MHND, that achieves low delay, high availability, and the order guarantee of events. MHND maintains the event occurrence order with a multi-homing configuration using conservative synchronization. We formulate MHND as an integer linear programming problem to minimize the delay. We prove that the distributed server allocation problem with MHND is NP-complete. Numerical results indicate that, as a multi-homing number, which is the number of servers to which each user belongs, increases, the availability increases while increasing the delay. Noteworthy, two or more multi-homing can achieve approximately an order of magnitude higher availability compared to that of conventional single-homing at the expense of a delay increase up to two times. By using MHND, flexible network design is achieved based on the acceptable delay in service and the required availability.

  • Kiite Cafe: A Web Service Enabling Users to Listen to the Same Song at the Same Moment While Reacting to the Song

    Kosetsu TSUKUDA  Keisuke ISHIDA  Masahiro HAMASAKI  Masataka GOTO  

     
    PAPER-Music Information Processing

      Pubricized:
    2023/07/28
      Vol:
    E106-D No:11
      Page(s):
    1906-1915

    This paper describes a public web service called Kiite Cafe that lets users get together virtually to listen to music. When users listen to music on Kiite Cafe, their experiences are enhanced by two architectures: (i) visualization of each user's reactions, and (ii) selection of songs from users' favorite songs. These architectures enable users to feel social connection with others and the joy of introducing others to their favorite songs as if they were together listening to music in person. In addition, the architectures provide three user experiences: (1) motivation to react to played songs, (2) the opportunity to listen to a diverse range of songs, and (3) the opportunity to contribute as a curator. By analyzing the behavior logs of 2,399 Kiite Cafe users over a year, we quantitatively show that these user experiences can generate various effects (e.g., users react to a more diverse range of songs on Kiite Cafe than when listening alone). We also discuss how our proposed architectures can enrich music listening experiences with others.

  • A Network Design Scheme in Delay Sensitive Monitoring Services Open Access

    Akio KAWABATA  Takuya TOJO  Bijoy CHAND CHATTERJEE  Eiji OKI  

     
    PAPER-Network Management/Operation

      Pubricized:
    2023/04/19
      Vol:
    E106-B No:10
      Page(s):
    903-914

    Mission-critical monitoring services, such as finding criminals with a monitoring camera, require rapid detection of newly updated data, where suppressing delay is desirable. Taking this direction, this paper proposes a network design scheme to minimize this delay for monitoring services that consist of Internet-of-Things (IoT) devices located at terminal endpoints (TEs), databases (DB), and applications (APLs). The proposed scheme determines the allocation of DB and APLs and the selection of the server to which TE belongs. DB and APL are allocated on an optimal server from multiple servers in the network. We formulate the proposed network design scheme as an integer linear programming problem. The delay reduction effect of the proposed scheme is evaluated under two network topologies and a monitoring camera system network. In the two network topologies, the delays of the proposed scheme are 78 and 80 percent, compared to that of the conventional scheme. In the monitoring camera system network, the delay of the proposed scheme is 77 percent compared to that of the conventional scheme. These results indicate that the proposed scheme reduces the delay compared to the conventional scheme where APLs are located near TEs. The computation time of the proposed scheme is acceptable for the design phase before the service is launched. The proposed scheme can contribute to a network design that detects newly added objects quickly in the monitoring services.

  • Energy Efficiency Based Multi Service Heterogeneous Access Network Selection Algorithm

    Meng-Yuan HE  Ling-Yun JIANG  

     
    PAPER-Network System

      Pubricized:
    2023/04/24
      Vol:
    E106-B No:10
      Page(s):
    881-890

    In the current heterogeneous wireless communication system, the sharp rise in energy consumption and the emergence of new service types pose great challenges to nowadays radio access network selection algorithms which do not take care of these new trends. So the proposed energy efficiency based multi-service heterogeneous access network selection algorithm-ESRS (Energy Saving Radio access network Selection) is intended to reduce the energy consumption caused by the traffic in the mobile network system composed of Base Stations (BSs) and Access Points (APs). This algorithm models the access network selection problem as a Multiple-Attribute Decision-Making (MADM) problem. To solve this problem, lots of methods are combined, including analytic Hierarchy Process (AHP), weighted grey relational analysis (GRA), entropy theory, simple additive weight (SAW), and utility function theory. There are two main steps in this algorithm. At first, the proposed algorithm gets the result of the user QoS of each network by dealing with the related QoS parameters, in which entropy theory and AHP are used to determine the QoS comprehensive weight, and the SAW is used to get each network's QoS. In addition to user QoS, parameters including user throughput, energy consumption utility and cost utility are also calculated in this step. In the second step, the fuzzy theory is used to define the weight of decision attributes, and weighted grey relational analysis (GRA) is used to calculate the network score, which determines the final choice. Because the fuzzy weight has a preference for the low energy consumption, the energy consumption of the traffic will be saved by choosing the network with the least energy consumption as much as possible. The simulation parts compared the performance of ESRS, ABE and MSNS algorithms. The numerical results show that ESRS algorithm can select the appropriate network based on the service demands and network parameters. Besides, it can effectively reduce the system energy consumption and overall cost while still maintaining a high overall QoS value and a high system throughput, when compared with the other two algorithms.

  • Virtual Network Function Placement Model Considering Both Availability and Probabilistic Protection for Service Delay

    Shinya HORIMOTO  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2023/04/13
      Vol:
    E106-B No:10
      Page(s):
    891-902

    This paper proposes a virtual network function (VNF) placement model considering both availability and probabilistic protection for the service delay to minimize the service deployment cost. Both availability and service delay are key requirements of services; a service provider handles the VNF placement problem with the goal of minimizing the service deployment cost while meeting these and other requirements. The previous works do not consider the delay of each route which the service can take when considering both availability and delay in the VNF placement problem; only the maximum delay was considered. We introduce probabilistic protection for service delay to minimize the service deployment cost with availability. The proposed model considers that the probability that the service delay, which consists of networking delay between hosts and processing delay in each VNF, exceeds its threshold is constrained within a given value; it also considers that the availability is constrained within a given value. We develop a two-stage heuristic algorithm to solve the VNF placement problem; it decides primary VNF placement by solving mixed-integer second-order cone programming in the first stage and backup VNF placement in the second stage. We observe that the proposed model reduces the service deployment cost compared to a baseline that considers the maximum delay by up to 12%, and that it obtains a feasible solution while the baseline does not in some examined situations.

  • Backup Resource Allocation Model with Probabilistic Protection Considering Service Delay

    Shinya HORIMOTO  Fujun HE  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2023/03/24
      Vol:
    E106-B No:9
      Page(s):
    798-816

    This paper proposes a backup resource allocation model for virtual network functions (VNFs) to minimize the total allocated computing capacity for backup with considering the service delay. If failures occur to primary hosts, the VNFs in failed hosts are recovered by backup hosts whose allocation is pre-determined. We introduce probabilistic protection, where the probability that the protection by a backup host fails is limited within a given value; it allows backup resource sharing to reduce the total allocated computing capacity. The previous work does not consider the service delay constraint in the backup resource allocation problem. The proposed model considers that the probability that the service delay, which consists of networking delay between hosts and processing delay in each VNF, exceeds its threshold is constrained within a given value. We introduce a basic algorithm to solve our formulated delay-constraint optimization problem. In a problem with the size that cannot be solved within an acceptable computation time limit by the basic algorithm, we develop a simulated annealing algorithm incorporating Yen's algorithm to handle the delay constraint heuristically. We observe that both algorithms in the proposed model reduce the total allocated computing capacity by up to 56.3% compared to a baseline; the simulated annealing algorithm can get feasible solutions in problems where the basic algorithm cannot.

  • Framework of Measuring Engagement with Access Logs Under Tracking Prevention for Affiliate Services

    Motoi IWASHITA  Hirotaka SUGITA  

     
    PAPER

      Pubricized:
    2023/05/24
      Vol:
    E106-D No:9
      Page(s):
    1452-1460

    In recent years, the market size for internet advertising has been increasing with the expansion of the Internet. Among the internet advertising technologies, affiliate services, which are a performance-based service, use cookies to track and measure the performance of affiliates. However, for the purpose of safeguarding personal information, cookies tend to be regulated, which leads to concerns over whether normal tracking by cookies works as intended. Therefore, in this study, the recent problems from the perspectives of affiliates, affiliate service providers, and advertisers are extracted, and a framework of cookie-independent measuring engagement method using access logs is proposed and open issues are discussed for future affiliate services.

  • User's Activities when Using Mobility as a Service — Results of the Smart Mobility Challenge Project 2020 and 2021 —

    Toshihisa SATO  Naohisa HASHIMOTO  

     
    INVITED PAPER

      Pubricized:
    2022/12/19
      Vol:
    E106-A No:5
      Page(s):
    745-751

    Mobility as a Service (MaaS) is expected to spread globally and in Japan as a solution for social issues related to transportation. Researchers have conducted MaaS trials in several cities. However, only a few trials have reached full-scale practical use. Therefore, it is essential to clarify issues such as the business model and user acceptability and seek solutions to social problems rather than simply conducting trials. This paper describes the introduction of a MaaS project supported by the Japanese government known as the “Smart Mobility Challenge” project, conducted in 2020 and 2021. We employed five themes necessary for social implementation from the first trial of this MaaS project. As a consortium, we also promoted regional demonstrations by soliciting regional applications based on these five themes. In addition, we conducted fundamental research using data from the MaaS projects to clarify local transportation issues in detail, collect residents' mobile behavior data, and assess the project's effects on the participant's happiness. We employed the life-space assessment method to investigate the spread of the residents' behavioral life-space resulting from using mobility services. The spread of the life-space mobility before and after using mobility services confirmed an expansion of the life-space because of specific services. Moreover, we conducted questionnaire surveys and clarified the relationships between life-space assessment, human characteristics, and subjective happiness using path analysis. We also conducted a persona-based approach in addition to objective data collection using GPS and wearable monitors and a web-based questionnaire. We found differences between the actual participants and participants assumed by local governments. We conducted interviews and developed tips for improving mobility service. We propose that qualitative data help clarify the image of mobility services that meet the residents' needs.

  • MicroState: An Anomaly Localization Method in Heterogeneous Microservice Systems

    Jingjing YANG  Yuchun GUO  Yishuai CHEN  

     
    PAPER

      Pubricized:
    2023/01/13
      Vol:
    E106-D No:5
      Page(s):
    904-912

    Microservice architecture has been widely adopted for large-scale applications because of its benefits of scalability, flexibility, and reliability. However, microservice architecture also proposes new challenges in diagnosing root causes of performance degradation. Existing methods rely on labeled data and suffer a high computation burden. This paper proposes MicroState, an unsupervised and lightweight method to pinpoint the root cause with detailed descriptions. We decompose root cause diagnosis into element location and detailed reason identification. To mitigate the impact of element heterogeneity and dynamic invocations, MicroState generates elements' invoked states, quantifies elements' abnormality by warping-based state comparison, and infers the anomalous group. MicroState locates the root cause element with the consideration of anomaly frequency and persistency. To locate the anomalous metric from diverse metrics, MicroState extracts metrics' trend features and evaluates metrics' abnormality based on their trend feature variation, which reduces the reliance on anomaly detectors. Our experimental evaluation based on public data of the Artificial intelligence for IT Operations Challenge (AIOps Challenge 2020) shows that MicroState locates root cause elements with 87% precision and diagnoses anomaly reasons accurately.

  • Reinforcement Learning for QoS-Constrained Autonomous Resource Allocation with H2H/M2M Co-Existence in Cellular Networks

    Xing WEI  Xuehua LI  Shuo CHEN  Na LI  

     
    PAPER

      Pubricized:
    2022/05/27
      Vol:
    E105-B No:11
      Page(s):
    1332-1341

    Machine-to-Machine (M2M) communication plays a pivotal role in the evolution of Internet of Things (IoT). Cellular networks are considered to be a key enabler for M2M communications, which are originally designed mainly for Human-to-Human (H2H) communications. The introduction of M2M users will cause a series of problems to traditional H2H users, i.e., interference between various traffic. Resource allocation is an effective solution to these problems. In this paper, we consider a shared resource block (RB) and power allocation in an H2H/M2M coexistence scenario, where M2M users are subdivided into delay-tolerant and delay-sensitive types. We first model the RB-power allocation problem as maximization of capacity under Quality-of-Service (QoS) constraints of different types of traffic. Then, a learning framework is introduced, wherein a complex agent is built from simpler subagents, which provides the basis for distributed deployment scheme. Further, we proposed distributed Q-learning based autonomous RB-power allocation algorithm (DQ-ARPA), which enables the machine type network gateways (MTCG) as agents to learn the wireless environment and choose the RB-power autonomously to maximize M2M pairs' capacity while ensuring the QoS requirements of critical services. Simulation results indicates that with an appropriate reward design, our proposed scheme succeeds in reducing the impact of delay-tolerant machine type users on critical services in terms of SINR thresholds and outage ratios.

  • Incentive-Stable Matching Protocol for Service Chain Placement in Multi-Operator Edge System

    Jen-Yu WANG  Li-Hsing YEN  Juliana LIMAN  

     
    PAPER

      Pubricized:
    2022/05/27
      Vol:
    E105-B No:11
      Page(s):
    1353-1360

    Network Function Virtualization (NFV) enables the embedding of Virtualized Network Function (VNF) into commodity servers. A sequence of VNFs can be chained in a particular order to form a service chain (SC). This paper considers placing multiple SCs in a geo-distributed edge system owned by multiple service providers (SPs). For a pair of SC and SP, minimizing the placement cost while meeting a latency constraint is formulated as an integer programming problem. As SC clients and SPs are self-interested, we study the matching between SCs and SPs that respects individual's interests yet maximizes social welfare. The proposed matching approach excludes any blocking individual and block pair which may jeopardize the stability of the result. Simulation results show that the proposed approach performs well in terms of social welfare but is suboptimal concerning the number of placed SCs.

  • Cost-Effective Service Chain Construction with VNF Sharing Model Based on Finite Capacity Queue

    Daisuke AMAYA  Takuji TACHIBANA  

     
    PAPER

      Pubricized:
    2022/05/27
      Vol:
    E105-B No:11
      Page(s):
    1361-1371

    Service chaining is attracting attention as a promising technology for providing a variety of network services by applying virtual network functions (VNFs) that can be instantiated on commercial off-the-shelf servers. The data transmission for each service chain has to satisfy the quality of service (QoS) requirements in terms of the loss probability and transmission delay, and hence the amount of resources for each VNF is expected to be sufficient for satisfying the QoS. However, the increase in the amount of VNF resources results in a high cost for improving the QoS. To reduce the cost of utilizing a VNF, sharing VNF instances through multiple service chains is an effective approach. However, the number of packets arriving at the VNF instance is increased, resulting in a degradation of the QoS. It is therefore important to select VNF instances shared by multiple service chains and to determine the amount of resources for the selected VNFs. In this paper, we propose a cost-effective service chain construction with a VNF sharing model. In the proposed method, each VNF is modeled as an M/M/1/K queueing model to evaluate the relationship between the amount of resources and the loss probability. The proposed method determines the VNF sharing, the VNF placement, the amount of resources for each VNF, and the transmission route of each service chain. For the optimization problem, these are applied according to our proposed heuristic algorithm. We evaluate the performance of the proposed method through a simulation. From the numerical examples, we show the effectiveness of the proposed method under certain network topologies.

  • Opportunities, Challenges, and Solutions in the 5G Era Open Access

    Chien-Chi KAO  Hey-Chyi YOUNG  

     
    INVITED PAPER

      Pubricized:
    2022/05/27
      Vol:
    E105-B No:11
      Page(s):
    1291-1298

    For many countries in the world, 5G is of strategic significance. In the 5G era, telecom operators are expected to enable and provide multiple services with different communication characteristics like enhanced broadband, ultra-reliable and extreme real-time communications at the same time. To meet the requirements, the 5G network essentially will be more complex compared with traditional 3G/4G networks. The unique characteristics of 5G resulted from new technologies bring a lot of opportunities as well as significant challenges. In this paper we first introduce 5G vision and check the global status. And then we illustrate the 5G technical essentials and point out the new opportunities that 5G will bring to us. We also highlight the coming challenges and share our 5G experience and solutions toward 5G vision in many aspects, including network, management and business.

  • A Hybrid Genetic Service Mining Method Based on Trace Clustering Population

    Yahui TANG  Tong LI  Rui ZHU  Cong LIU  Shuaipeng ZHANG  

     
    PAPER-Office Information Systems, e-Business Modeling

      Pubricized:
    2022/04/28
      Vol:
    E105-D No:8
      Page(s):
    1443-1455

    Service mining aims to use process mining for the analysis of services, making it possible to discover, analyze, and improve service processes. In the context of Web services, the recording of all kinds of events related to activities is possible, which can be used to extract new information of service processes. However, the distributed nature of the services tends to generate large-scale service event logs, which complicates the discovery and analysis of service processes. To solve this problem, this research focus on the existing large-scale service event logs, a hybrid genetic service mining based on a trace clustering population method (HGSM) is proposed. By using trace clustering, the complex service system is divided into multiple functionally independent components, thereby simplifying the mining environment; And HGSM improves the mining efficiency of the genetic mining algorithm from the aspects of initial population quality improvement and genetic operation improvement, makes it better handle large service event logs. Experimental results demonstrate that compare with existing state-of-the-art mining methods, HGSM has better characteristics to handle large service event logs, in terms of both the mining efficiency and model quality.

  • Resilient Virtual Network Embedding Ensuring Connectivity under Substrate Node Failures

    Nagao OGINO  

     
    PAPER-Network

      Pubricized:
    2021/11/11
      Vol:
    E105-B No:5
      Page(s):
    557-568

    A variety of smart services are being provided on multiple virtual networks embedded into a common inter-cloud substrate network. The substrate network operator deploys critical substrate nodes so that multiple service providers can achieve enhanced services due to the secure sharing of their service data. Even if one of the critical substrate nodes incurs damage, resiliency of the enhanced services can be assured due to reallocation of the workload and periodic backup of the service data to the other normal critical substrate nodes. However, the connectivity of the embedded virtual networks must be maintained so that the enhanced services can be continuously provided to all clients on the virtual networks. This paper considers resilient virtual network embedding (VNE) that ensures the connectivity of the embedded virtual networks after critical substrate node failures have occurred. The resilient VNE problem is formulated using an integer linear programming model and a distance-based method is proposed to solve the large-scale resilient VNE problem efficiently. Simulation results demonstrate that the distance-based method can derive a sub-optimum VNE solution with a small computational effort. The method derived a VNE solution with an approximation ratio of less than 1.2 within ten seconds in all the simulation experiments.

  • Cylindrical Massive MIMO System with Low-Complexity Angle-Based User Selection for High-Altitude Platform Stations

    Koji TASHIRO  Kenji HOSHINO  Atsushi NAGATE  

     
    PAPER-Adaptive Array Antennas/MIMO

      Pubricized:
    2021/10/15
      Vol:
    E105-B No:4
      Page(s):
    449-460

    High-altitude platform stations (HAPSs) are recognized as a promising technology for coverage extension in the sixth generation (6G) mobile communications and beyond. The purpose of this study is to develop a HAPS system with a coverage radius of 100km and high capacity by focusing on the following two aspects: array antenna structure and user selection. HAPS systems must jointly use massive multiple-input multiple-output (mMIMO) and multiuser MIMO techniques to increase their capacity. However, the coverage achieved by a conventional planar array antenna is limited to a circular area with a radius of only tens of kilometers. A conventional semi-orthogonal user selection (SUS) scheme based on the orthogonality of channel vectors achieves high capacity, but it has high complexity. First, this paper proposes a cylindrical mMIMO system to achieve an ultra-wide coverage radius of 100km and high capacity. Second, this paper presents a novel angle-based user selection (AUS) scheme, where a user selection problem is formulated as a maximization of the minimum angular difference between users over all user groups. Finally, a low-complexity suboptimal algorithm (SA) for AUS is also proposed. Assuming an area with a 100km radius, simulation results demonstrate that the proposed cylindrical mMIMO system improves the signal-to-interference-plus-noise ratio by approx. 12dB at the boundary of the area, and it achieves approx. 1.5 times higher capacity than the conventional mMIMO which uses a planar array antenna. In addition, the results show that the proposed AUS scheme improves the lower percentiles in the system capacity distribution compared with SUS and basic random user selection. Furthermore, the computational complexity of the proposed SA is in the order of only 1/4000 that of SUS.

1-20hit(679hit)