The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] solution(404hit)

21-40hit(404hit)

  • Improved Resolution Enhancement Technique for Broadband Illumination in Flat Panel Display Lithography Open Access

    Kanji SUZUKI  Manabu HAKKO  

     
    INVITED PAPER

      Pubricized:
    2021/08/17
      Vol:
    E105-C No:2
      Page(s):
    59-67

    In flat panel display (FPD) lithography, a high resolution and large depth of focus (DOF) are required. The demands for high throughput have necessitated the use of large glass plates and exposure areas, thereby increasing focal unevenness and reducing process latitude. Thus, a large DOF is needed, particularly for high-resolution lithography. To manufacture future high-definition displays, 1.0μm line and space (L/S) is predicted to be required, and a technique to achieve this resolution with adequate DOF is necessary. To improve the resolution and DOF, resolution enhancement techniques (RETs) have been introduced. RETs such as off-axis illumination (OAI) and phase-shift masks (PSMs) have been widely used in semiconductor lithography, which utilizes narrowband illumination. To effectively use RETs in FPD lithography, modification for broadband illumination is required because FPD lithography utilizes such illumination as exposure light. However, thus far, RETs for broadband illumination have not been studied. This study aimed to develop techniques to achieve 1.0μm L/S resolution with an acceptable DOF. To this end, this paper proposes a method that combines our previously developed RET, namely, divided spectrum illumination (DSI), with an attenuated PSM (Att. PSM). Theoretical observations and simulations present the design of a PSM for broadband illumination. The transmittance and phase shift, whose degree varies according to the wavelength, are determined in terms of aerial image contrast and resist loss. The design of DSI for an Att. PSM is also discussed considering image contrast, DOF, and illumination intensity. Finally, the exposure results of 1.0μm L/S using DSI and PSM techniques are shown, demonstrating that a PSM greatly improves the resist profile, and DSI enhances the DOF by approximately 30% compared to conventional OAI. Thus, DSI and PSMs can be used in practical applications for achieving 1.0μm L/S with sufficient DOF.

  • Nonuniformity Measurement of Image Resolution under Effect of Color Speckle for Raster-Scan RGB Laser Mobile Projector

    Junichi KINOSHITA  Akira TAKAMORI  Kazuhisa YAMAMOTO  Kazuo KURODA  Koji SUZUKI  Keisuke HIEDA  

     
    PAPER

      Pubricized:
    2021/08/17
      Vol:
    E105-C No:2
      Page(s):
    86-94

    Image resolution under the effect of color speckle was successfully measured for a raster-scan mobile projector, using the modified contrast modulation method. This method was based on the eye-diagram analysis for distinguishing the binary image signals, black-and-white line pairs. The image resolution and the related metrics, illuminance, chromaticity, and speckle contrast were measured at the nine regions on the full-frame area projected on a standard diffusive reflectance screen. The nonuniformity data over the nine regions were discussed and analyzed.

  • Power-Based Criteria for Signal Reconstruction Using 1-bit Resolution DACs in Massive MU-MIMO OFDM Downlink

    Riki OKAWA  Yukitoshi SANADA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/04/02
      Vol:
    E104-B No:10
      Page(s):
    1299-1306

    The sum rate performance of nonlinier quantized precoding using Gibbs sampling are evaluated in a massive multiuser multiple-input multiple-output (MU-MIMO) system in this paper. Massive MU-MIMO is a key technology to handle the growth of data traffic. In a full digital massive MU-MIMO system, however, the resolution of digital-to-analogue converters (DACs) in transmit antenna branches have to be low to yield acceptable power consumption. Thus, a combinational optimization problem is solved for the nonlinier quantized precoding to determine transmit signals from finite alphabets output from low resolution DACs. A conventional optimization criterion minimizes errors between desired signals and received signals at user equipments (UEs). However, the system sum rate may decrease as it increases the transmit power. This paper proposes two optimization criteria that take the transmit power into account in order to maximize the sum rate. Mixed Gibbs sampling is applied to obtain the suboptimal solution of the nonlinear optimization problem. Numerical results obtained through computer simulations show that the two proposed criteria achieve higher sum rates than the conventional criterion. On the other hand, the sum rate criterion achieves the largest sum rate while it leads to less throughputs than the MMSE criterion on approximately 60% of subcarriers.

  • Face Super-Resolution via Hierarchical Multi-Scale Residual Fusion Network

    Yu WANG  Tao LU  Zhihao WU  Yuntao WU  Yanduo ZHANG  

     
    LETTER-Image

      Pubricized:
    2021/03/03
      Vol:
    E104-A No:9
      Page(s):
    1365-1369

    Exploring the structural information as prior to facial images is a key issue of face super-resolution (SR). Although deep convolutional neural networks (CNNs) own powerful representation ability, how to accurately use facial structural information remains challenges. In this paper, we proposed a new residual fusion network to utilize the multi-scale structural information for face SR. Different from the existing methods of increasing network depth, the bottleneck attention module is introduced to extract fine facial structural features by exploring correlation from feature maps. Finally, hierarchical scales of structural information is fused for generating a high-resolution (HR) facial image. Experimental results show the proposed network outperforms some existing state-of-the-art CNNs based face SR algorithms.

  • Multi-View Texture Learning for Face Super-Resolution

    Yu WANG  Tao LU  Feng YAO  Yuntao WU  Yanduo ZHANG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/03/24
      Vol:
    E104-D No:7
      Page(s):
    1028-1038

    In recent years, single face image super-resolution (SR) using deep neural networks have been well developed. However, most of the face images captured by the camera in a real scene are from different views of the same person, and the existing traditional multi-frame image SR requires alignment between images. Due to multi-view face images contain texture information from different views, which can be used as effective prior information, how to use this prior information from multi-views to reconstruct frontal face images is challenging. In order to effectively solve the above problems, we propose a novel face SR network based on multi-view face images, which focus on obtaining more texture information from multi-view face images to help the reconstruction of frontal face images. And in this network, we also propose a texture attention mechanism to transfer high-precision texture compensation information to the frontal face image to obtain better visual effects. We conduct subjective and objective evaluations, and the experimental results show the great potential of using multi-view face images SR. The comparison with other state-of-the-art deep learning SR methods proves that the proposed method has excellent performance.

  • A Harvested Power-Oriented SWIPT Scheme in MIMO Communication Systems with Non-Linear Harvesters

    Yan CHEN  Chen LIU  Mujun QIAN  Yu HUANG  Wenfeng SUN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/01/18
      Vol:
    E104-B No:7
      Page(s):
    893-902

    This paper studies a harvested power-oriented simultaneous wireless information and power transfer (SWIPT) scheme over multiple-input multiple-output (MIMO) interference channels in which energy harvesting (EH) circuits exhibit nonlinearity. To maximize the power harvested by all receivers, we propose an algorithm to jointly optimize the transmit beamforming vectors, power splitting (PS) ratios and the receive decoding vectors. As all variables are coupled to some extent, the problem is non-convex and hard to solve. To deal with this non-convex problem, an iterative optimization method is proposed. When two variables are fixed, the third variable is optimized. Specifically, when the transmit beamforming vectors are optimized, the transferred objective function is the sum of several fractional functions. Non-linear sum-of-ratios programming is used to solve the transferred objective function. The convergence and advantage of our proposed scheme compared with traditional EH circuits are validated by simulation results.

  • Multi-Category Image Super-Resolution with Convolutional Neural Network and Multi-Task Learning

    Kazuya URAZOE  Nobutaka KUROKI  Yu KATO  Shinya OHTANI  Tetsuya HIROSE  Masahiro NUMA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2020/10/02
      Vol:
    E104-D No:1
      Page(s):
    183-193

    This paper presents an image super-resolution technique using a convolutional neural network (CNN) and multi-task learning for multiple image categories. The image categories include natural, manga, and text images. Their features differ from each other. However, several CNNs for super-resolution are trained with a single category. If the input image category is different from that of the training images, the performance of super-resolution is degraded. There are two possible solutions to manage multi-categories with conventional CNNs. The first involves the preparation of the CNNs for every category. This solution, however, requires a category classifier to select an appropriate CNN. The second is to learn all categories with a single CNN. In this solution, the CNN cannot optimize its internal behavior for each category. Therefore, this paper presents a super-resolution CNN architecture for multiple image categories. The proposed CNN has two parallel outputs for a high-resolution image and a category label. The main CNN for the high-resolution image is a normal three convolutional layer-architecture, and the sub neural network for the category label is branched out from its middle layer and consists of two fully-connected layers. This architecture can simultaneously learn the high-resolution image and its category using multi-task learning. The category information is used for optimizing the super-resolution. In an applied setting, the proposed CNN can automatically estimate the input image category and change the internal behavior. Experimental results of 2× image magnification have shown that the average peak signal-to-noise ratio for the proposed method is approximately 0.22 dB higher than that for the conventional super-resolution with no difference in processing time and parameters. We have ensured that the proposed method is useful when the input image category is varying.

  • Detection of Range-Spread Target in Spatially Correlated Weibull Clutter Based on AR Spectral Estimation Open Access

    Jian BAI  Lu MA  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2020/07/27
      Vol:
    E104-A No:1
      Page(s):
    305-309

    In high range resolution radar systems, the detection of range-spread target under correlated non-Gaussian clutter faces many problems. In this paper, a novel detector employing an autoregressive (AR) model is proposed to improve the detection performance. The algorithm is elaborately designed and analyzed considering the clutter characteristics. Numerical simulations and measurement data verify the effectiveness and advantages of the proposed detector for the range-spread target in spatially correlated non-Gaussian clutter.

  • Multi-Resolution Fusion Convolutional Neural Networks for Intrapulse Modulation LPI Radar Waveforms Recognition

    Xue NI  Huali WANG  Ying ZHU  Fan MENG  

     
    PAPER-Sensing

      Pubricized:
    2020/06/15
      Vol:
    E103-B No:12
      Page(s):
    1470-1476

    Low Probability of Intercept (LPI) radar waveform has complex and diverse modulation schemes, which cannot be easily identified by the traditional methods. The research on intrapulse modulation LPI radar waveform recognition has received increasing attention. In this paper, we propose an automatic LPI radar waveform recognition algorithm that uses a multi-resolution fusion convolutional neural network. First, signals embedded within the noise are processed using Choi-William Distribution (CWD) to obtain time-frequency feature images. Then, the images are resized by interpolation and sent to the proposed network for training and identification. The network takes a dual-channel CNN structure to obtain features at different resolutions and makes features fusion by using the concatenation and Inception module. Extensive simulations are carried out on twelve types of LPI radar waveforms, including BPSK, Costas, Frank, LFM, P1~P4, and T1~T4, corrupted with additive white Gaussian noise of SNR from 10dB to -8dB. The results show that the overall recognition rate of the proposed algorithm reaches 95.1% when the SNR is -6dB. We also try various sample selection methods related to the recognition task of the system. The conclusion is that reducing the samples with SNR above 2dB or below -8dB can effectively improve the training speed of the network while maintaining recognition accuracy.

  • Super-Resolution Imaging Method for Millimeter Wave Synthetic Aperture Interferometric Radiometer

    Jianfei CHEN  Xiaowei ZHU  Yuehua LI  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2020/06/12
      Vol:
    E103-D No:9
      Page(s):
    2011-2014

    Synthetic aperture interferometric radiometer (SAIR) is a powerful sensors for high-resolution imaging. However, because of the observation errors and small number of visibility sampling points, the accuracy of reconstructed images is usually low. To overcome this deficiency, a novel super-resolution imaging (SrI) method based on super-resolution reconstruction idea is proposed in this paper. In SrI method, sparse visibility functions are first measured at different observation locations. Then the sparse visibility functions are utilized to simultaneously construct the fusion visibility function and the fusion imaging model. Finally, the high-resolution image is reconstructed by solving the sparse optimization of fusion imaging model. The simulation results demonstrate that the proposed SrI method has higher reconstruction accuracy and can improve the imaging quality of SAIR effectively.

  • Improvement of Luminance Isotropy for Convolutional Neural Networks-Based Image Super-Resolution

    Kazuya URAZOE  Nobutaka KUROKI  Yu KATO  Shinya OHTANI  Tetsuya HIROSE  Masahiro NUMA  

     
    LETTER-Image

      Vol:
    E103-A No:7
      Page(s):
    955-958

    Convolutional neural network (CNN)-based image super-resolutions are widely used as a high-quality image-enhancement technique. However, in general, they show little to no luminance isotropy. Thus, we propose two methods, “Luminance Inversion Training (LIT)” and “Luminance Inversion Averaging (LIA),” to improve the luminance isotropy of CNN-based image super-resolutions. Experimental results of 2× image magnification show that the average peak signal-to-noise ratio (PSNR) using Luminance Inversion Averaging is about 0.15-0.20dB higher than that for the conventional super-resolution.

  • Cloud Annealing: A Novel Simulated Annealing Algorithm Based on Cloud Model

    Shanshan JIAO  Zhisong PAN  Yutian CHEN  Yunbo LI  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/09/27
      Vol:
    E103-D No:1
      Page(s):
    85-92

    As one of the most popular intelligent optimization algorithms, Simulated Annealing (SA) faces two key problems, the generation of perturbation solutions and the control strategy of the outer loop (cooling schedule). In this paper, we introduce the Gaussian Cloud model to solve both problems and propose a novel cloud annealing algorithm. Its basic idea is to use the Gaussian Cloud model with decreasing numerical character He (Hyper-entropy) to generate new solutions in the inner loop, while He essentially indicates a heuristic control strategy to combine global random search of the outer loop and local tuning search of the inner loop. Experimental results in function optimization problems (i.e. single-peak, multi-peak and high dimensional functions) show that, compared with the simple SA algorithm, the proposed cloud annealing algorithm will lead to significant improvement on convergence and the average value of obtained solutions is usually closer to the optimal solution.

  • High-quality Hardware Integer Motion Estimation for HEVC/H.265 Encoder Open Access

    Chuang ZHU  Jie LIU  Xiao Feng HUANG  Guo Qing XIANG  

     
    BRIEF PAPER-Integrated Electronics

      Pubricized:
    2019/08/13
      Vol:
    E102-C No:12
      Page(s):
    853-856

    This paper reports a high-quality hardware-friendly integer motion estimation (IME) scheme. According to different characteristics of CTU content, the proposed method adopts different adaptive multi-resolution strategies coupled with accurate full-PU modes IME at the finest level. Besides, by using motion vector derivation, IME for the second reference frame is simplified and hardware resource is saved greatly through processing element (PE) sharing. It is shown that the proposed architecture can support the real-time processing of 4K-UHD @60fps, while the BD-rate is just increased by 0.53%.

  • Blind Quality Index for Super Resolution Reconstructed Images Using First- and Second-Order Structural Degradation

    Jiansheng QIAN  Bo HU  Lijuan TANG  Jianying ZHANG  Song LIANG  

     
    PAPER-Image

      Vol:
    E102-A No:11
      Page(s):
    1533-1541

    Super resolution (SR) image reconstruction has attracted increasing attention these years and many SR image reconstruction algorithms have been proposed for restoring a high-resolution image from one or multiple low-resolution images. However, how to objectively evaluate the quality of SR reconstructed images remains an open problem. Although a great number of image quality metrics have been proposed, they are quite limited to evaluate the quality of SR reconstructed images. Inspired by this, this paper presents a blind quality index for SR reconstructed images using first- and second-order structural degradation. First, the SR reconstructed image is decomposed into multi-order derivative magnitude maps, which are effective for first- and second-order structural representation. Then, log-energy based features are extracted on these multi-order derivative magnitude maps in the frequency domain. Finally, support vector regression is used to learn the quality model for SR reconstructed images. The results of extensive experiments that were conducted on one public database demonstrate the superior performance of the proposed method over the existing quality metrics. Moreover, the proposed method is less dependent on the number of training images and has low computational cost.

  • Subjective Super-Resolution Model on Coarse High-Speed LED Display in Combination with Pseudo Fixation Eye Movements Open Access

    Toyotaro TOKIMOTO  Shintaro TOKIMOTO  Kengo FUJII  Shogo MORITA  Hirotsugu YAMAMOTO  

     
    INVITED PAPER

      Vol:
    E102-C No:11
      Page(s):
    780-788

    We propose a method to realize a subjective super-resolution on a high-speed LED display, which dynamically shows a set of four neighboring pixels on every LED pixel. We have experimentally confirmed the subjective super-resolution effect. This paper proposes a subjective super-resolution hypothesis in human visual system and reports simulation results with pseudo fixation eye movements.

  • Dynamic Performance Adjustment of CPU and GPU in a Gaming Notebook at the Battery Mode

    Chun-Hung CHENG  Ying-Wen BAI  

     
    PAPER-Computer System

      Pubricized:
    2019/03/27
      Vol:
    E102-D No:7
      Page(s):
    1257-1270

    This new design uses a low power embedded controller (EC) in cooperation with the BIOS of a notebook (NB) computer, both to accomplish dynamic adjustment and to maintain a required performance level of the battery mode of the notebook. In order to extend the operation time at the battery mode, in general, the notebook computer will directly reduce the clock rate and then reduce the performance. This design can obtain the necessary balance of the performance and the power consumption by using both the EC and the BIOS cooperatively to implement the dynamic control of both the CPU and the GPU frequency to maintain the system performance at a sufficient level for a high speed and high resolution video game. In contrast, in order to maintain a certain notebook performance, in terms of battery life it will be necessary to make some trade-offs.

  • High-Quality Multi-View Image Extraction from a Light Field Camera Considering Its Physical Pixel Arrangement

    Shu FUJITA  Keita TAKAHASHI  Toshiaki FUJII  

     
    INVITED PAPER

      Pubricized:
    2019/01/28
      Vol:
    E102-D No:4
      Page(s):
    702-714

    We propose a method for extracting multi-view images from a light field (plenoptic) camera that accurately handles the physical pixel arrangement of this camera. We use a Lytro Illum camera to obtain 4D light field data (a set of multi-viewpoint images) through a micro-lens array. The light field data are multiplexed on a single image sensor, and thus, the data is first demultiplexed into a set of multi-viewpoint (sub-aperture) images. However, the demultiplexing process usually includes interpolation of the original data such as demosaicing for a color filter array and pixel resampling for the hexagonal pixel arrangement of the original sub-aperture images. If this interpolation is performed, some information is added or lost to/from the original data. In contrast, we preserve the original data as faithfully as possible, and use them directly for the super resolution reconstruction, where the super-resolved image and the corresponding depth map are alternatively refined. We experimentally demonstrate the effectiveness of our method in resolution enhancement through comparisons with Light Field Toolbox and Lytro Desktop Application. Moreover, we also mention another type of light field cameras, a Raytrix camera, and describe how it can be handled to extract high-quality multi-view images.

  • Learning of Nonnegative Matrix Factorization Models for Inconsistent Resolution Dataset Analysis

    Masahiro KOHJIMA  Tatsushi MATSUBAYASHI  Hiroshi SAWADA  

     
    INVITED PAPER

      Pubricized:
    2019/02/04
      Vol:
    E102-D No:4
      Page(s):
    715-723

    Due to the need to protect personal information and the impracticality of exhaustive data collection, there is increasing need to deal with datasets with various levels of granularity, such as user-individual data and user-group data. In this study, we propose a new method for jointly analyzing multiple datasets with different granularity. The proposed method is a probabilistic model based on nonnegative matrix factorization, which is derived by introducing latent variables that indicate the high-resolution data underlying the low-resolution data. Experiments on purchase logs show that the proposed method has a better performance than the existing methods. Furthermore, by deriving an extension of the proposed method, we show that the proposed method is a new fundamental approach for analyzing datasets with different granularity.

  • Full-Aperture Processing of Ultra-High Resolution Spaceborne SAR Spotlight Data Based on One-Step Motion Compensation Algorithm

    Tianshun XIANG  Daiyin ZHU  

     
    PAPER-Remote Sensing

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    247-256

    With the development of spaceborne synthetic aperture radar (SAR), ultra-high spatial resolution has become a hot topic in recent years. The system with high spatial resolution requests large range bandwidths and long azimuth integration time. However, due to the long azimuth integration time, many problems arise, which cannot be ignored in the operational ultra-high resolution spotlight mode. This paper investigates two critical issues that need to be noticed for the full-aperture processing of ultra-high resolution spaceborne SAR spotlight data. The first one is the inaccuracy of the traditional hyperbolic range model (HRM) when the system approaches decimeter range resolution. The second one is the azimuth spectral folding phenomenon. The problems mentioned above result in significant degradation of the focusing effect. Thus, to solve these problems, a full-aperture processing scheme is proposed in this paper which combines the superiorities of two generally utilized processing algorithms: the precision of one-step motion compensation (MOCO) algorithm and the efficiency of modified two-step processing approach (TSA). Firstly, one-step MOCO algorithm, a state-of-the-art MOCO algorithm which has been applied in ultra-high resolution airborne SAR systems, can precisely correct for the error caused by spaceborne curved orbit. Secondly, the modified TSA can avoid the phenomenon of azimuth spectrum folding effectively. The key point of the modified TSA is the deramping approach which is carried out via the convolution operation. The reference function, varying with the instantaneous range frequency, is adopted by the convolution operation for obtaining the unfolding spectrum in azimuth direction. After these operations, the traditional wavenumber domain algorithm is available because the error caused by spaceborne curved orbit and the influence of the spectrum folding in azimuth direction have been totally resolved. Based on this processing scheme, the ultra-high resolution spaceborne SAR spotlight data can be well focused. The performance of the full-aperture processing scheme is demonstrated by point targets simulation.

  • Millimeter-Wave Radar Target Recognition Algorithm Based on Collaborative Auto-Encoder

    Yilu MA  Zhihui YE  Yuehua LI  

     
    LETTER-Pattern Recognition

      Pubricized:
    2018/10/03
      Vol:
    E102-D No:1
      Page(s):
    202-205

    Conventional target recognition methods usually suffer from information-loss and target-aspect sensitivity when applied to radar high resolution range profile (HRRP) recognition. Thus, Effective establishment of robust and discriminatory feature representation has a significant performance improvement of practical radar applications. In this work, we present a novel feature extraction method, based on modified collaborative auto-encoder, for millimeter-wave radar HRRP recognition. The latent frame-specific weight vector is trained for samples in a frame, which contributes to retaining local information for different targets. Experimental results demonstrate that the proposed algorithm obtains higher target recognition accuracy than conventional target recognition algorithms.

21-40hit(404hit)