The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] solution(404hit)

201-220hit(404hit)

  • Theoretical Investigation on Required Number of Bits for Monochrome Density Images on High-Luminance Electronic Display

    Junji SUZUKI  Isao FURUKAWA  

     
    LETTER-Image

      Vol:
    E90-A No:8
      Page(s):
    1713-1716

    This paper proposes a design method for representing monochrome medical X-ray images on an electronic display. The required quantizing resolution of the input density and output voltage are theoretically clarified. The proposed method makes it easier to determine the required quantizing resolution which is important in a X-ray diagnostic system.

  • A SPICE-Oriented Nonexistence Test for DC Solutions of Nonlinear Circuits

    Wataru KUROKI  Kiyotaka YAMAMURA  

     
    PAPER-Nonlinear Problems

      Vol:
    E90-A No:8
      Page(s):
    1661-1668

    As a powerful computational test for nonexistence of a DC solution of a nonlinear circuit, the LP test is well-known. This test is useful for finding all solutions of nonlinear circuits; it is also useful for verifying the nonexistence of a DC operating point in a given region where operating points should not exist. However, the LP test has not been widely used in practical circuit simulation because the programming is not easy for non-experts or beginners. In this paper, we propose a new LP test that can be easily implemented on SPICE without programming. The proposed test is useful because we can easily check the nonexistence of a solution using SPICE only.

  • Zero-Anaphora Resolution in Chinese Using Maximum Entropy

    Jing PENG  Kenji ARAKI  

     
    PAPER-Natural Language Processing

      Vol:
    E90-D No:7
      Page(s):
    1092-1102

    In this paper, we propose a learning classifier based on maximum entropy (ME) for resolving zero-anaphora in Chinese text. Besides regular grammatical, lexical, positional and semantic features motivated by previous research on anaphora resolution, we develop two innovative Web-based features for extracting additional semantic information from the Web. The values of the two features can be obtained easily by querying the Web using some patterns. Our study shows that our machine learning approach is able to achieve an accuracy comparable to that of state-of-the-art systems. The Web as a knowledge source can be incorporated effectively into the ME learning framework and significantly improves the performance of our approach.

  • A Robust and Fast Imaging Algorithm with an Envelope of Circles for UWB Pulse Radars

    Shouhei KIDERA  Takuya SAKAMOTO  Toru SATO  

     
    PAPER-Sensing

      Vol:
    E90-B No:7
      Page(s):
    1801-1809

    Target shape estimation with UWB pulse radars is a promising imaging technique for household robots. We have already proposed a fast imaging algorithm, SEABED, that is based on a reversible transform BST (Boundary Scattering Transform) between the received signals and the target shape. However, the target image obtained by SEABED deteriorates in a noisy environment because it utilizes a derivative of received data. In this paper, we propose a robust imaging method with an envelope of circles. We clarify by numerical simulation that the proposed method can realize a level of robust and fast imaging that cannot be achieved by the original SEABED.

  • Digital Calibration Method for Binary-Weighted Current-Steering D/A-Converters without Calibration ADC

    Yusuke IKEDA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E90-C No:6
      Page(s):
    1172-1180

    A new digital calibration scheme for a 14 bit binary weighted current-steering digital-to-analog converter (DAC) is presented. This scheme uses a simple current comparator for the current measurement instead of a high-resolution ADC. Therefore, a faster calibration cycle and smaller additional circuits are possible compared to the scheme with the high-resolution ADC. In the proposed calibration scheme, the lowest 8 bit part of the DAC is used for both error correction and normal operation. Therefore, the extra DACs required for calibration are only a 3 bit DAC and a 6 bit DAC. Nevertheless, a large calibration range is achieved. Full 14 bit resolution is achieved with a small chip-area. The simulation results show that DNL and INL after calibration are 0.26 LSB and 0.46 LSB, respectively. They also show that the spurious free dynamic range is 83 dB (57 dB) for signals of 24 kHz (98 MHz) at 200 Msps update rate.

  • A High-Resolution Imaging Algorithm without Derivatives Based on Waveform Estimation for UWB Radars

    Shouhei KIDERA  Takuya SAKAMOTO  Toru SATO  

     
    PAPER-Sensing

      Vol:
    E90-B No:6
      Page(s):
    1487-1494

    UWB pulse radars enable us to measure a target location with high range-resolution, and so are applicable for measurement systems for robots and automobile. We have already proposed a robust and fast imaging algorithm with an envelope of circles, which is suitable for these applications. In this method, we determine time delays from received signals with the matched filter for a transmitted waveform. However, scattered waveforms are different from transmitted one depending on the target shape. Therefore, the resolution of the target edges deteriorates due to these waveform distortions. In this paper, a high-resolution imaging algorithm for convex targets is proposed by iteration of the shape and waveform estimation. We show application examples with numerical simulations and experiments, and confirm its capability to detect edges of an object.

  • 10-Bit Current Driver LSI for Large-Size and High-Resolution Active Matrix Organic Light Emitting Diode Displays

    Il-Hun JEONG  Oh-Kyong KWON  

     
    PAPER-LSI Applications

      Vol:
    E90-C No:5
      Page(s):
    1021-1026

    We present the 10-bit current driver LSI with 2-set current digital-to-analog converters (DACs) and output channel current sample and hold (S/H) circuits for large-size and high-resolution active matrix organic light emitting diode (AMOLED) display applications. This current driver LSI has 300 output channels and the output current ranges from 0 µA to 290 µA. The maximum output current level can be controlled by 2-bit control signals because the maximum output current level depends on display size and resolution. The chip was fabricated using 0.65µm BiCMOS process and characterized. The chip size is 16.8 mm3.6 mm. Experimental results show that the output current DNL is less than 0.4 LSB and that INL is less than 1.5 LSB. This is good enough to apply 15.5 inch WXGA (1280RGB768) AMOLED displays.

  • Blind Equalization with Generalized Inverse Channel Estimation and Fractional Phase MLSE Metrics for Mobile Communications

    Issei KANNO  Hiroshi SUZUKI  Kazuhiko FUKAWA  

     
    PAPER-Communications

      Vol:
    E90-A No:3
      Page(s):
    553-561

    This paper proposes a new blind adaptive MLSE equalizer for frequency selective mobile radio channels. The proposed equalizer performs channel estimation for each survivor path of the Viterbi algorithm (VA), and restricts the number of symbol candidates for the channel estimation in order to reduce prohibitive complexity. In such channel estimation, autocorrelation matrices of the symbol candidates are likely to become singular, which increases the estimation error. To cope with the singularity, the proposed equalizer employs a recursive channel estimation algorithm using the Moore-Penrose generalized inverse of the autocorrelation matrix. As another problem, the blind channel estimation can yield plural optimal estimates of a channel impulse response, and the ambiguity of the estimates degrades the BER performance. To avoid this ambiguity, the proposed equalizer is enhanced so that it can take advantage of the fractional sampling. The enhanced equalizer performs symbol-spaced channel estimation for each fractional sampling phase. This equalizer combines separate channel estimation errors, and provides the sum to the VA processor as the branch metric, which tremendously reduces the probability that a correct estimate turns into a false one. Computer simulation demonstrates the effectiveness of the proposed equalizers in the frequency selective fading channels.

  • A Uniform Asymptotic Solution for Whispering Gallery Mode Radiation from a Cylindrically Curved Concave Conducting Surface

    Keiji GOTO  Toshihide AJIKI  Toru KAWANO  Toyohiko ISHIHARA  

     
    PAPER-High-Frequency Asymptotic Methods

      Vol:
    E90-C No:2
      Page(s):
    243-251

    When a cylindrically curved concave conducting surface is terminated abruptly at the edge, the whispering gallery (WG) mode propagating toward the edge direction is radiated into the free space from the aperture plane at the edge. In this paper, by applying the new analysis method, we shall derive a uniform geometrical theory of diffraction solution (UTD) for the electric-type WG mode radiation field applicable in the transition region near the geometrical boundaries produced by the incident modal ray on the edge of the curved surface. The UTD is represented by the summation of the solution for the geometrical ray converted from the modal ray of the WG mode and the solution for the uniform edge diffracted ray scattered at the cylindrically curved edge. By comparing with the reference solution obtained numerically from the integral representation of the radiation field, we will confirm the validity and the utility of the UTD proposed in this paper.

  • A Modified Generalized Hough Transform for Image Search

    Preeyakorn TIPWAI  Suthep MADARASMI  

     
    PAPER

      Vol:
    E90-D No:1
      Page(s):
    165-172

    We present the use of a Modified Generalized Hough Transform (MGHT) and deformable contours for image data retrieval where a given contour, gray-scale, or color template image can be detected in the target image, irrespective of its position, size, rotation, and smooth deformation transformations. Potential template positions are found in the target image using our novel modified Generalized Hough Transform method that takes measurements from the template features by extending a line from each edge contour point in its gradient direction to the other end of the object. The gradient difference is used to create a relationship with the orientation and length of this line segment. Potential matching positions in the target image are then searched by also extending a line from each target edge point to another end along the normal, then looking up the measurements data from the template image. Positions with high votes become candidate positions. Each candidate position is used to find a match by allowing the template to undergo a contour transformation. The deformed template contour is matched with the target by measuring the similarity in contour tangent direction and the smoothness of the matching vector. The deformation parameters are then updated via a Bayesian algorithm to find the best match. To avoid getting stuck in a local minimum solution, a novel coarse-and-fine model for contour matching is included. Results are presented for real images of several kinds including bin picking and fingerprint identification.

  • A 1.25-Gb/s Digitally-Controlled Dual-Loop Clock and Data Recovery Circuit with Enhanced Phase Resolution

    Chang-Kyung SEONG  Seung-Woo LEE  Woo-Young CHOI  

     
    PAPER-Electronic Circuits

      Vol:
    E90-C No:1
      Page(s):
    165-170

    A new 1.25-Gb/s digitally-controlled dual-loop clock and data recovery circuit is realized. To overcome jitter problems caused by the phase resolution limit, the CDR has two phase generation stages: coarse generation by a phase interpolator and fine generation by a variable delay buffer. The performance of the proposed CDR was verified by behavioral and transistor-level simulations. A prototype CDR chip fabricated with 0.18 µm CMOS process shows error-free operation for 400 ppm frequency offset. The chip occupies 165255 µm2 and consumes 17.8 mW.

  • Perceptually Transparent Polyline Watermarking Based on Normal Multi-Resolution Representation

    Yu-Chi PU  Wei-Chang DU  I-Chang JOU  

     
    PAPER-Application Information Security

      Vol:
    E89-D No:12
      Page(s):
    2939-2949

    Digital watermarking techniques were developed for regular raster data such as images or video, but little research addressed irregular vector data, such as the shapes of cartoons or elevation contours. Vector graphic images, such as those in SVG format, are popular on the WWW, and provide the advantage of permitting affine transformations without aliasing. The creation of cartoon images or the acquisition of GIS geometry data involves much work, so the copyright and ownership of vector data must be protected. Common components in vector graphic images are polygonal lines or polylines. This work develops a normal multi-resolution representation of a polygonal line, and embeds a copyright notice or serial number in this representation. Previous studies on polyline watermarking have the non-transparent problems, including self-intersection of line segments. The experimental results demonstrate that the proposed watermarking approach is perceptually transparent, and solves the self-intersection problem. It is also resistant to similarity transformation, traversal reordering, point insertion/deletion and random noise attacks.

  • A Compact Implementation Scheme of 1-Dimensional PSDs with Double-Resolution Interpolation

    Kunil CHOE  Gunhee HAN  

     
    LETTER-Integrated Electronics

      Vol:
    E89-C No:12
      Page(s):
    1958-1961

    This paper proposes a compact interpolation scheme dedicated to a 1-dimensional position sensitive detector (PSD) with an optical sensing pixel array. The pixels are divided into even- and odd-numbered groups and winner take all (WTA) circuits are provided to each of the groups. The simulated results show that the detecting step-width is reduced to the half of the original one after applying the interpolation scheme.

  • Image Quality Management for the Super Hi-Vision System at the Kyushu National Museum

    Kenichiro MASAOKA  Masahiro KAWAKITA  Masayuki SUGAWARA  Masaru KANAZAWA  Kenji OHZEKI  Yuji NOJIRI  

     
    PAPER

      Vol:
    E89-A No:11
      Page(s):
    2938-2944

    We have introduced an extremely high resolution video system 'Super Hi-Vision' at the Kyushu National Museum. This feature opened in October 2005 with the purpose of exhibiting high-quality images of national treasures and traditional arts and crafts to its visitors. The system achieves high resolution using the spatial pixel offset method, quadrupling the horizontal and vertical resolution of HDTV. To display the images with high fidelity, it is important to manipulate the images on the basis of the system characteristics. This paper reports on the efforts to ensure image quality for this Super Hi-Vision System, focusing on resolution and color reproduction.

  • An Adaptive Beamforming Method for Phased Array Antenna with MEMS Phase Shifters

    Quoc Tuan TRAN  Shinsuke HARA  Yuuta NAKAYA  Ichirou IDA  Yasuyuki OISHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:9
      Page(s):
    2503-2513

    Adaptive array antennas, which control their own patterns by means of feed-back or feed-forward control, are effective tools for gain enhancement and interference suppression. However, when applying them to mobile terminals, the problems of hardware complexity and power consumption need to be taken into consideration. One solution is the use of analog device-based adaptive array antennas, such as Reactively Steered Adaptive Array (RESAA) antennas and phased array antennas, which have the attractive characteristics of low cost and power consumption. In this paper, we propose an adaptive beamforming method based on a one-dimension search algorithm for phased array antennas with Micro Electro Mechanical Systems (MEMS) phase shifters, taking into consideration their slow operating speed due to mechanical structure of the devices. Furthermore, a smoothing processing is introduced to prevent the effect of noise and a multi-resolution alogrithm is proposed to help the system form beams more quickly and stably. Numerical results based on the IEEE 802.11a Wireless Local Area Network (WLAN) standard show that the proposed method has good interference suppression and gain enhancement capabilities in multipath fading channels.

  • A Study on Non-octave Scalable Image Coding and Its Performance Evaluation Using Digital Cinema Test Material

    Takayuki NAKACHI  Tomoko SAWABE  Junji SUZUKI  Tetsuro FUJII  

     
    PAPER-Image

      Vol:
    E89-A No:9
      Page(s):
    2405-2414

    JPEG2000, an international standard for still image compression, offers 1) high coding performance, 2) unified lossless/lossy compression, and 3) resolution and SNR scalability. Resolution scalability is an especially promising attribute given the popularity of Super High Definition (SHD) images like digital-cinema. Unfortunately, its current implementation of resolution scalability is restricted to powers of two. In this paper, we introduce non-octave scalable coding (NSC) based on the use of filter banks. Two types of non-octave scalable coding are implemented. One is based on a DCT filter bank and the other uses wavelet transform. The latter is compatible with JPEG2000 Part2. By using the proposed algorithm, images with rational scale resolutions can be decoded from a compressed bit stream. Experiments on digital cinema test material show the effectiveness of the proposed algorithm.

  • Optimization of Tunable Wavelength Converters and Internal Wavelengths in the Optical Packet Switch with Shared FDL Buffer

    Huhnkuk LIM  Changhwan OH  Chang-Soo PARK  

     
    LETTER-Switching for Communications

      Vol:
    E89-B No:7
      Page(s):
    2074-2078

    In an effort to reduce switch cost, we present the optimum numbers of tunable wavelength converters (TWCs) and internal wavelengths required for contention resolution of asynchronous and variable length packets, in the optical packet switch (OPS) with the shared fiber delay line (FDL) buffer. To optimize TWCs and internal wavelengths related to OPS design cost, we proposed a scheduling algorithm for the limited TWCs and internal wavelengths. For three TWC alternatives (not shared, partially shared, and fully shared cases), the optimum numbers of TWCs and internal wavelengths to guarantee minimum packet loss are evaluated to prevent resource waste. Under a given load, TWCs and internal wavelengths could be significantly reduced, guaranteeing the same packet loss as the performance of an OPS with full TWCs and internal wavelengths.

  • Video Synthesis with High Spatio-Temporal Resolution Using Motion Compensation and Spectral Fusion

    Kiyotaka WATANABE  Yoshio IWAI  Hajime NAGAHARA  Masahiko YACHIDA  Toshiya SUZUKI  

     
    PAPER-Video Generation

      Vol:
    E89-D No:7
      Page(s):
    2186-2196

    We propose a novel strategy to obtain a high spatio-temporal resolution video. To this end, we introduce a dual sensor camera that can capture two video sequences with the same field of view simultaneously. These sequences record high resolution with low frame rate and low resolution with high frame rate. This paper presents an algorithm to synthesize a high spatio-temporal resolution video from these two video sequences by using motion compensation and spectral fusion. We confirm that the proposed method improves the resolution and frame rate of the synthesized video.

  • A Study to Realize a CMOS Pipelined Current-Mode A-to-D Converter for Video Applications

    Yasuhiro SUGIMOTO  Yuji GOHDA  Shigeto TANAKA  

     
    LETTER

      Vol:
    E89-C No:6
      Page(s):
    811-813

    The possibility of realizing a CMOS pipelined current-mode A-D converter (ADC) for video applications has been examined. Two times the input current is obtained at the output of a bit-block of a pipelined ADC by subtracting the negative output current from the positive output current in the pseudo-differential configuration. Subtraction of the sub-DAC (D-to-A converter) current from the two times the input current is performed by controlling of the current comparator, which compares the positive and the negative input currents. A prototype chip has been implemented using 0.35 µm CMOS devices. It operates in 28 MS/s, and showed a 42 dB signal-to-noise ratio from the 2 V supply voltage.

  • Dimensioning Models of Shared Resources for Optical Packet Switching in Unbalanced Input/Output Traffic Scenarios

    Vincenzo ERAMO  Marco LISTANTI  Luca Silvio BOVO  

     
    PAPER-Switching for Communications

      Vol:
    E89-B No:5
      Page(s):
    1505-1516

    This paper compares selected Optical Packet Switching architectures that use the wavelength conversion technique to solve the packet contention problem. The architectures in question share wavelength converters, which are needed to wavelength translate arriving packets. This paper focuses on two architectures: the Shared Per Output Line (SPOL) and the Shared Per Input Line (SPIL) architectures, in which the wavelength converters are shared per output and input fiber respectively. The performance of the proposed architectures is evaluated for all the balance/unbalance combinations of input/output traffic. Packet loss probability is expressed as a function of the number of wavelength converters used, by means of analytical models validated by simulations. The results obtained show that the SPIL architecture, when compared to the SPOL architecture, allows for greater economies in terms of number of wavelength converters needed. While the performance of the two architectures tends to have similar values in a scenario with unbalanced input traffic and balanced output traffic, in unbalanced output traffic scenarios the SPIL architecture requires about 50% less wavelength converters than the SPOL architecture does, for a given packet loss probability.

201-220hit(404hit)